Stern Star Trek: Custom Shooter Knob & Housing

A customer of mine graciously agreed to sell me his Shooter housing decal from aurich‘s Alternate decal set; as a result, I was able to finally finish my custom shooter housing and knob.

custom Star Trek Knob
custom 50th Anniversary Shooter Knob – Stern Star Trek

I had a shooter housing custom powder coated LE blue and installed the Decal. The knob is 3D printed at Shapeways from my custom design:

in polished Nickel and I powder coated it LE blue to match the housing.

A Star Trek 50th Anniversary Pin was then JB welded to the knob and it was encased in EasyCast Clear Casting Epoxy to give it a smooth surface for the palm of your hand.

Overall; I’m very happy with how it turned out.

Data East: Chase rope for Star Trek and Hook – Part 1

The Data East Chase rope lights used in two Data East Pinball machines (Star Trek: 25th) and Hook) are a huge problem on the game. So much so; that my Ebay-purchased game came with no rope lights at all. 🙁 This blog series walks thru my intention of recreating the chase rope lights – but made out of LEDs so they use less current, generate less heat, and can be used for decades without any issues.

First, some credit – Patofnaud on Pinside wrote a great tutorial on repairing these chase lights. I used this pinside thread almost exclusively for this blog series and if you happen to have the original rope lights; please take a look at his tutorial.

My game has no chase lights to repair; so I’m going to have to replicate the chase lights. I decided that I didn’t want to try and re-configure a standard off the shelf rope light because they likely don’t support doing a +12VDC common with three ground leads as discussed in Patofnaud’s post #1. Additionally; I don’t have exact specs of the rope light w/ regards to light spacing, diameter of the rope, ect. Since I’m going to have to recreate the lamps; I have decided to do a conversion to LEDs… specifically, using some “fairy light LEDs” which have recently become available on the market. I started by going to Hobby Lobby and buying a set of their battery operated lights using a 40% off coupon. Amazon has a whole bunch of alternate versions of this product… so you might be better off looking at Amazon if you don’t have a Hobby Lobby near you. B072NH2FQ1 seems to be a nearly identical match to what I got from Hobby Lobby.

These strings appear to be made of discreet 603 Warm White LEDs soldered to a common anode and common cathode. The LEDs are encased in a hot-glue like product to protect the LEDs from mechanical stress and help with water proofing. The fact that all LEDs are in parallel might end up being an issue because you can’t control the current into each LED. LEDs wired this way means that any variance in forward voltage drop (Vf) between the diodes in a series may mean that LEDs with low Vf would get more current that LEDs with higher Vf and could lead to premature failure of those leds. We’ll see long term if this becomes an issue with this project.

Taking apart the battery pack of the fairy LED light uncovered what I thought… A power switch and a 1/4W series current resistor of 15ohms. 3AA batteries supply 4.5V which is current limited by that 15ohm resistor. I did some quick measurements of the entire string and IIRC; the whole string took around 113mA with the 15ohm current limiter. I don’t recall what the series Vf was for the whole string.

Because the LEDs are powered with a 4.5V source; it becomes rather obvious that I can’t use these as a drop in for the 12V incandescent rope light originally in the machine. I’m going to need a conditioning circuit which will drop the 12V down to ~4.5V and provide some current limiting. I started by measuring my machine’s ramp to determine the approximate length of the chase lights. I measured with a piece of string to be about 15inches. The fairy LED lights have spacing of about 3inches which means that my largest segment would be about 15/3 = 6 leds, max. These 6 will become important for the series resistor calculations in the future.

Before I got to far into designing a voltage level shifter and current limiter; I looked at my machine. I couldn’t find the chase light connector shown in post #6 of pat’s thread. I couldn’t find it because the previous owner connected the left and right .156 connectors together with a Z-connector. That may mean there is now an issue with the chase light board (DE #520-5054-00 or #520-5054-01) in my backbox but I’m thinking connecting them together did no future damage since they are wired together in a OR configuration in the schematic manual. Meaning OUT1A is tied to OUT2A via the Orange/Black wire in the cabinet (See post #7, picture 1). I decided that Zconnector is a good place to put my Incandescent to LED converter circuit. My plan is to replace the Zconnector with a board which does the conditioning.

I decided I was going to abuse a LM1117 style +5V regulator to voltage shift the +12V common down to +5V common then use a series resistor to current limit for the LEDs. Since +12V is the common; I’d need to do a wired-OR configuration with a set of fast Recovery SCHOTTKY diodes to the OUT connections on the chase light board. I have no idea if the LM1117 vreg can operate properly with a v+ common connection; but I suspect it will have no issue given the frequency a which the lamps operate. Additionally, given the previous incandescent lamps had issues blowing the NPN Darlington arrays on the lamp chase board; I figured putting in a PTC resettable fuse would be a nice addition. My circuit took shape in eaglecad using Digikey as a part reference.

Here’s my original Fab A circuit, keeping in mind this is untested – but I retain all rights to this circuit for the moment:

Chase Light to LED
DE Chase LED conditioner

Some theory of operation:
D1&D2 provide some polarity protection – for paranoia. D3-D8 are the Schottky diodes which provide wired-OR back from the ground of the +5V regulator (U1) back to the chase light board’s OUT* connections.
C1, C2, C3 provide some filtering for the +5Vreg to help it maintain stability with the wired-OR configuration. D9 provides some additional protection for the Vreg – probably not needed; but extra insurance. R2 – R7 provide the series current-limiting resistors for the various LED strings. Why the different values of 13.3 vs 16.9? Well; my quick napkin calculations shows that there may be 5 or 6LEDs on the longest string and then one less on the shorter strings. I plan on connecting the longest string on the 1A & 1B lines while the shorter strings (with the higher resistors) will be on the others. F1-F6 are the resettable PTC fuses. The bidirectional LEDs at the bottom are monitoring the output of the chase light board to give me an indication the chase board is working properly. They will chase green if working properly. I basically created a small “Z-connector” board to condition these LEDs but also added some small connector boards to help me interface from the LED strings to a simple 4 pin 0.1″ pitch latchable connector. The idea is these smaller connector boards would be fixed to the end of the “rope lights” and allow for a quick connection.

A little background on the Series resistor calculations. Basically; Vf isn’t known for the parallel LED strings. You can’t measure Vf with the diode setting of a Digital volt meter which btw; my favorite is a Fluke 87 series meter. Vf according to my DVM is around 2.4V and we know that no current white leds operate at 2.4V for 20mA. Since I don’t know which LED the chinese put in these strips; I had to make an educated guess. To do this I went to digikey.com and drilled down on warm white 603 LEDs, downloaded the table (using the button near the bottom of the page) and then imported the data into excel so I could get an average of the Voltage – Forward (Vf) (Typ) column. I calculated Vf ~= 3.23V. Armed with Vf, and the knowledge I wanted to operate the LEDs near their 20mA operational current so they would be their brightest I was able to calculate a theoretical series resistor. Here are the “knowns”:
Vf = 3.23.
Each LED should operate at ~18mA.
With the ground diode in the Vreg path… assume Vfdiode = 0.4V. This would cause Vout of Vreg to be 5+0.4V, or 5.4V.
“ground” will be thru the UL2003A darlington on the chase driver board. VCEsat = 0.9 min.
Assume 5 leds needed for longest string and solve using Ohms Law. R=V/I.
V = 5.4 – Vfled – VCEsat
I = 18mA * numOfLEDs in string or 18mA * 5
R = (5.4 – 3.23 – 0.9) / (5 * 18mA ) = 14.11 ohms
Subtract off typical Fuse resistance of 0.9ohms and you arrive at ~13.3ohms. Repeat the calculation for a 4 led string and you arrive at ~16.9ohms.

The only “gotcha” with this theoretical calculation is that what happens to the LED if we are drawing near 18mA? There’s no real ground plane or PCB to draw heat away from the LED. The only “heat sink” is the hot glue used to encase the LED and the wire LEDs connecting the LEDs. I’m hoping the low duty cycle of the LEDs will help keep thermal runaway in check. This is something I’ll have to watch in the final assembly. If LEDs start dying… we’ll know it’s either getting too hot… or the parallel LED VF vs current is a problem.

Here’s the Fab A boards as committed to OSHPark. This is their render of the boards as I don’t have them back from fabrication yet:

DE Chase Fab A (Top)
DE Chase Fab A (Top)
DE Chase Fab A (Bottom)
DE Chase Fab A (Bottom)

I’ll post more on the circuit boards in Part 2 when I get them back from OSH Park and have them built. We’ll see if my little experiment bears fruit.

Now onto the actual chase lights themselves. I thought about using polyurethane blue tubing from Granger.com as I posted in Pat’s Pinside thread on post #19. But honestly, I don’t really feel like the blue rope light fits the ST:25th theme very well. To me; it looks like some attention getting feature to draw in the eyes of a would be quarter-dropper in an Arcade. Not that is a bad thing; I just figure since I’m not going to an have original rope light assembly with the proper Light spacing… I might as well try to make it fit the theme a little better. If not blue, then what? Well Clear is definitely an option… but it won’t really hide the led wiring very well. I had a lot of extra 1/2″OD, 1/4″ID rigid Acrylic tubing left over from the guide plastics from Star Trek: The Mirror Universe custom pinball project. I was thinking of doing that with some custom Acrylic etches on the tubing. The problem is that Techshop.ws failed due to piss-poor-Management so I can’t really go there to use their rotary attachment on the Tortec. My new-to-me Epilog Laser doesn’t have a rotary Attachment, yet. Not sure what I’m going to do about that yet… Even if I get a Rotary… what would I put on the Tubing? Then there’s the issue of bending it properly… which shouldn’t be too hard given the Youtube videos for Hard Tubing in water cooled case tutorials.

Then I stumbled across ENT Corp on Ebay who seems to have colored versions of this rigid tubing available in cut-to-order. I went ahead and ordered 6 pieces of the smoke acrylic tubing custom cut to 15.25inches. After I experiment with the etching and try my hand at the clear tube bending… I’ll proably finalize the chase lights using the smoke tubing on the final machine.

That’s it for Part 1 of this blog series… I’ll start Part 2 when I get some tubing experiments done and/or when I get the PCBs back from OSHPark. For now, Peace and Long life…

Announce: Star Trek The Next Generation Popcap kit

We are pleased to announce the immediate availability of our Star Trek: The Next Generation Popcaps for the 1993 Williams Pinball machine by the same name.
This Popcap kit comes with three high quality Popcaps made of all metal, Zinc Alloy construction and feature a highly polished raised metallic plating for the insignia with a black enamel for the cap’s background. The kit comes with two round caps and one “cut down” cap to fit under the STNG’s beta ramp.

Go from this:
Before
to this:
After

In addition to the metal popcaps; the kit features a set of laser-cut acrylic Undercaps in your choice of colors. The stock kit offers the Undercaps in uniformed colors – IE one red (Command), one yellow (Engineering), and one light Blue (Science). There are also options to go All Red, or all Purple Undercaps to create a specific look for the game. For lighting; the kit comes stock with a 4-SMD #555 comet LED lamps but offers an upgrade to the 11-SMD popbumper LEDs in either Purple, Red, or uniformed colors. We actually offer two versions of the uniformed color 11-SMD configuration – the first being standard Blue:
Uniform - Standard Blue
with the other intended to match Troi’s uniform color:
Uniform - Troi Blue.

Comprehensive, step-by-step installation instructions are included in PDF form on our product page. This PDF also feature modification instructions for the BriteMods’ BriteCap EVO LEDs as they are the recommended LED product to use with these Popcaps.

Check out KnockerLover’s independant review of our Popcaps on Pinside in his STNG Full Title Modding Thread which is a very impressive read on it’s own. He decided to go with an 11-SMD, all purple configuration which looks stunning when combined his re-imagining.

This popcap kit is simple to install and is readily available at:
http://pinball-mods.com/oscom/game-specific-products-star-trek-the-next-generation-star-trekthe-next-generation-popcaps-p-24.html

Announce: Star Trek – The Next Generation VUK/Bracket Dress Kit

Pinball-Mods.com is pleased to announce we have reached an agreement with Nycon to distribute his laser etched decals for the Star Trek: The Next Generation Pinball machine by Williams in time for the 30th Anniversary and exclusively for the North American Market (USA & Canada). This 18 decal set will provide a much needed face lift for the two VUKs, several brackets, and the three flipper bats in this game. Each decal set is laser etched by Nycon in Germany out of high-quality brushed aluminum decal material to reveal the black plastic underneath.

The decal set dresses up the Left and Right Vertical UpKickers (VUK):
STNG: Left VUK
STNG: Right VUK

Decals for all three brackets and the spinner:
STNG: Alpha Bracket/spinner
STNG: Beta Bracket
STNG: Delta Bracket

Flipper-Bat Toppers are also included for all three flippers:
STNG: Flipper Toppers

For more information; please see Nycon’s thread on Pinside.

These decals are simple to install and are readily available @:
http://pinball-mods.com/oscom/game-specific-products-star-trek-the-next-generation-stng-vukbracket-dressing-p-25.html

Announce: Star Rollover LED boards

We are pleased to make a delayed announcement of a product which we’ve had in stock for almost a year. This Star Rollover LED board fits on the underside of your Playfield under a Star rollover assembly and will bathe the Star Insert is lower power LED light. With this product you can replace the inefficient horizontal lamp socket and incandescent light bulb with this board:
Star Rollover
Each board provides 4 natural white LEDs in a non-polarized light from either a 6.3V source. Because the board has a built-in rectifier bridge; you can supply power from both a 6.3VAC GI circuit or ~6.3VDC controlled insert. You can even control the brightness via a microcontroller PWM signal or from one of the new DIY control systems such as the PROC or its PD-LED driver board.

The design also features a brightness resistor at R5 to allow you to dial the brightness to your desired level. A hole in the center of our PCB allows the actuator to work from the insert to a standard Leaf switch typically under the insert.

A typical installation may require a set of #6-32 x 0.25 inch wood screws so you can bolt it to the back of the playfield under the star rollover insert. Electrical installation is super simple; simply solder the GI connection from the old horizontal lamp socket to the JGI connection, or jump to the nearest GI socket as we did in our machine below. Here is an example installation we did on our Star Trek: The Mirror Universe custom pinball machine.


Source: My Star Trek: The Mirror Universe custom machine

This populated PCB is available for immediate shipping in Our Online store @ http://pinball-mods.com/oscom/modifications-do-it-yourself-star-rollover-led-p-17.html

Announce: Stern Star Trek Nebula Mod

We are pleased to announce the official launch and immediate availability of our Nebula Backbox lighting kit for the Stern Star Trek Pinball Machines. While the product has been available on our site for almost a month; we just completed our detailed step-by-step instructions to aid you in installing it in any Stern Star Trek Pinball machine – enabling us to make the product official with this announcement.

This kit comes with a set of three Printed circuit Board Assemblies (PBAs) which you snap apart and install behind the stock nebula plastics on a Pro, Premium, or Limited Edition pinball machine’s Back board. Like our Kelvin product; it is 100% compatible with the PWM circuitry on our GI Dimmer so the customer can dim or control the Nebula lighting for both Normal and Klingon MultiBall modes.

This kit is a Do-It-Yourself mod requiring assembly using the attached step-by-step instructions:
Stern Star Trek: Nebula Backboard Upgrade
and may take a couple of hours to complete.

Here’s the stock, unlit Nebula backboard on the Author’s machine:

Here’s the Nebula backboard with our DIY Nebula kit installed:
New Star Trek Nebula mod

For More information; please visit our online store’s product page for more detail and an order link:
http://pinball-mods.com/oscom/game-specific-products-stern-star-trek-star-trek-nebula-p-15.html

Announce: USS Kelvin StadiumLEDs for Stern Star Trek Pinball

I am pleased to announce the immediate availability of our USS Kelvin mod for the Hallmark USS Kelvin. This pair of PBAs will bathe your USS Kelvin in a natural white glow provided by 3 LEDs in the base PBA while providing proper power regulation to the interior ship’s LEDs provided by Hallmark. The base PBA includes a variable resistor to allow the user to adjust the Stadium LEDs to their desired setting. The kit includes a translucent custom-made 3D Printed bracket which is also available at our ShapeWays shop.

Additionally, this assembly is 100% compatible with the PWM circuitry on our GI Dimmer so the customer can dim or control the Ship for both Normal and Klingon MultiBall modes.

This is a Do-It-Yourself mod requiring assembly using the attached step-by-step instructions:
USS Kelvin StadiumLEDs Install
and should only take a couple of hours to complete.

Here’s an installed example of this mod on the Author’s Machine:

For more information; please visit our online store at:
http://pinball-mods.com/oscom/game-specific-products-stern-star-trek-uss-kelvin-stadiumleds-p-8.html

Announce: Stern Star Trek Laser Upgrade Kit

Pinball-Mods.com is pleased to announce the immediate availability of a Laser upgrade kit for your Stern Star Trek Premium or Limited Edition pinball machine. We offer a higher power Red laser module if you wish to remain “stock” but have just a little more “punch” so it can be seen. We also have a green laser module similar to other offerings. However, what sets us apart from the competition is we are the first to offer a blue laser module for these machines. Why blue; well I think it’s a better match to the LE machines and the Playfield graphics.

Our kits come with the laser module, a custom cable harness with bolts into the stock harness – no alligator clips, no fuss, no mess. Our harness has a built-in Voltage Regulator Modules to power our custom-designed modules.

Detailed Step-By-Step Instructions are available here or on our product page.

Not sure which color you want? Check out our Youtube videos comparing the three colors against the stock red laser pointer.
Please note: These videos were taken without our Stern GI Dimmer installed; so the General Illumination is at 100% as it came from Stern. These videos are 1920×1080 HD; so feel free to click thru to Youtube and/or go full screen.

Announce: Translucent Early Solid State Pinball Buttons/Housings

I’m excited to announce the immediate availability of the C904 Housings and C905 buttons in 10 different pinball friendly translucent colors. The Colors are intended to closely match the colors of many pinball plastics such as lane guides, star posts, and switched inserts and are intended to be back-lit with LEDs. These new buttons are replacement parts for the following manufacturers / Part numbers:

  • Buttons:
    • Bally C-905 button
    • Gottlieb B-16680 button
    • Stern / Chicago Coin Machine 4B-200 button
  • Housings:
    • Bally C-904 housing
    • Gottlieb C-13900 bushing
    • Stern / Chicago Coin Machine 4B-199 housing

The Gottlieb BUSHING FOR DOUBLE PUSHBUTTON #B-21018 is not currently available; however, it should be possible to modify our buttons easily to replicate them. I’ll try to spend some time in the future to publish a how-to-modify here in this blog if there is interest.

These buttons are available in the following translucent colors:

  • Yellow,
  • Amber,
  • Orange,
  • Red,
  • Blue,
  • Green,
  • and Purple.

Additionally we’ve created some unique custom colors which should be of interest to the pinball community:

  • Clear
  • Teal,
  • and Smoke Black.

We also have some limited stock of:

  • Lime Green,
  • Smoke-Blue,
  • and Light Purple.

Colors are show below and should represent the colors available. Please Note:Keep in mind your monitor and my camera’s color balance will throw the colors off a bit from the actual product you receive so use these as an approximation of what will be shipped to you.

Pinball Button

C905 Translucent Pinball Buttons

The Housings:

Pinball Button Housing

C904 Pinball Housing

C904 Translucent Pinball Button Housings

Both the Housings and Buttons are made out of PMMA (Acrylic) so they can be easily laser etched and paint filled like I did on my Original Bally Star Trek Restoration.

Please let us know if there is a color not represented here… or if you’d like to see some opaque colors made.

To buy a set for you Pinball Machine; please see the following product page:
http://pinball-mods.com/oscom/index.php/cPath/28

Bally Flipper Button Mod

I’d also like to call Attention to a product we’ve had on the website for a couple of months… The Bally Flipper Mod was designed by myself several years ago for the Bally Star Trek Restoration. Each PCB features 12 LEDs in either Red or Green and rotated the LEDs to simulate a rotating pattern. I’ve held off announcing them here because I wanted to get the companion buttons on the website so fellow Pinheads would have the option of buying them with the colored button of their choice – IE one stop shopping.

This Flipper button mod is available as a 2 PCB set and looks like this in Green:

Here are a couple of videos of the Red in action:

Green LEDs:

Please take a gander at our product page:
http://pinball-mods.com/oscom/product_info.php/products_id/5
for more information or to purchase this modification.

Rest In Piece, Mr Nimoy!

The passing of Leonard Nimoy @ 83 on Feb 27, 2015 made me want to do something special in honor of the legendary actor. I decided to give everyone ordered between his passing and 3/6 a 10% discount at my web store with matching 10% donation in memory of Mr Nimoy to the COPD Foundation. His family has asked us to do this instead of sending flowers.

This discount was site-wide; so applied to whatever I happened to have in stock. Items included:

With the sale over; I crunched the numbers and determined that the donation would have been $68.44; but I wanted to give a little more from my personal pocket book – adding another $20 to make it $88.44.

A PDF of the donation receipt is here:
Nimoy COPD DonationNimoy COPD Donation

Thanks to all my fellow #Pinball enthusiasts on Pinside for making this donation possible.

#RIP #LeonardNimoy