Star Trek v3.0: EPROM Labels

On April 5, 2020; ChadH of Pinside (aka released a much needed rule update to the Data East Star Trek Pinball machine from 1991. You can download his rom patches from: his site for free. The changelist for his patch is documented here.

In celebration of Chad’s work; I created a set of EPROM labels to cover the rom files. I’ve decided to release the labels for free personal use. Enjoy!

Printed on 1×2.75″ mailing label stock. Compatible with Avery 5351.

Monster Bash: Mummy Painting

This is part 2 of the Monster Bash figure painting series. For part 1; please see the painting of The Creature from Black Lagoon. In Part 2; I’m going to tackle The Mummy and his sarcophagus which reside above the lanes on the Monster Bash pinball machine. The mummy was chosen mainly because it can be fairly easily removed from the game with a single 1/4inch screw between his legs.

Like Part 1; we start with spraying the cream colored Mummy with some Adhesion promoter so that the air bush paint would more easily stick to the figure. Here’s a picture of the figure attached to some scrap acrylic material as we wait for the promoter to partially dry per the can’s instructions:

This also had quiet a bit of detail; just no paint. I set out to use only neutral tones on this piece adding some shadowing as needed.

I started by putting some Transparent Black in the “cracks” of the mummy as a background for the raised bandages:

The idea here was the bandages had “layers” so the ones in the back needed to be darker. In retrospect; I probably should have used something less black; maybe more grey… or maybe a custom mix of Sand and black. However, I didn’t figure this out until the end of the project. I may revisit this later.

I had applied the black with a paint brush. In fact this whole paint process would use airbrush paints applied with a paint brush; as it was just easier to work on the details. With the paint still wet; I used a toothbrush to aggressively work the black into every “crack” in the mummy’s casting:

I then used a dry paper towel to remove most of the black paint leaving mainly the cracks filled with paint:

I then thermally set the black paint with a heat gun on low.

Then using a paint brush; I added some pearlescent white as a highlight on the raised bandages:

I then used some thinned out transparent gray and airbrushed a light coating over the whole figure to knock down the aggressiveness of the new white highlights:

Again thermally setting the paint with a heat gun on low.

With the paint thermally set; I sprayed the mummy with matte acrylic clear coat and let it dry:

As I stated; he’s a little to dark for my tastes; so I may revisit his paintjob at a later date. Here’s a picture of him installed – sorry for the flash; it kinda washed him out:

A Mummy transformation wouldn’t be complete without some work on his sarcophagus. On Monster bash; this looks to be a vacuum formed piece of orange acrylic. I took this off by examining the assembly drawings in the manual. It became clear that I could get it off if I just removed the e-clips securing the lid to the solenoid. Take care here; as those e-clips are tiny and could easily be lost in top of the playfield. Once I had the lid removed; I cleaned the surface with some Naphtha to remove excess oil which may have been present from my handling of the piece. Once I had it clean; I used some blue painters tape to mask off the areas I didn’t want paint:

With the paint mask complete; I had decided earlier that the original artist was proably trying to duplicate part of King Tut’s sarcophagus with the unique shapes of the head and the heirogyphics on the side panels. This picture form is a pretty good guess:

With that picture as a guideline; I bought some metallic “Sapphire” blue acrylic paint from amazon and had it delivered. I haven’t seen the sarcophagus in real life; but figured that paint would probably at least be close enough for the game.

Unlike the Mummy himself; I didn’t want to risk “foggin” the orange acrylic with the Adhesion promoter; so I just liberally applied the paint using my latex gloved finger to work the paint into the groves of the acrylic:

Then using a wet paper towel; I cleaned up the surface as much as I could so the orange acrylic still showed thru on the high points:

I let it sit for about 2 or so hours before applying a second coat and repeating the process:

Letting the second coat dry for about 3 hours in front of a fan.

I then remove the blue painters’ tape and cleaned up the masking lines with light scraping pressure from an exacto knife:

If you are going to replicate this look; I do mean light pressure from an exacto knife as you do not want to scratch the surface of the acrylic. Here’s the sarcophagus lid re-installed over the mummy in the game:

With that the Mummy has completed his transformation; short of a lighter color-scheme revisit.

Part 3 of this series has not begun. I’m still trying to decide which of the remaining monsters is easiest to remove. I’m guessing the Bride of Frankenstein might be the next easiest… but I’m not sure how her assembly is put together. I somewhat hopeful that I just remove the screw on top of her head and then her head comes off the pogo stick – then maybe her body will just slip over the stick. Not sure.

WMS Monster Bash: Creature Painting

Earlier in the month; I purchased a great condition 1998 Williams Monster Bash pinball machine from a local collector. This machine was restored in that it had a new Playfield and new set of decals but it was still an original machine (not a remake). Everything looked pretty good except it had the original unmodified set of figures for the Universal “Classic” monsters. There are some fellow pinball vendors which offer to paint these classic figurines as a set for north of $140. I am not one to shy away from attempting to do this myself; and this was one of those situations. Also; I didn’t really want to leave my machine in pieces and parts for that long.

I decided to take a stab at the Creature from the Black Lagoon since he was relatively easy to remove from under the PF. The original figure is really pretty nicely detailed; it just lacks a finished look. This creature originated in a 1954 as black-and-white film so the only real “color” representation is the Theatrical release poster from that movie. One could say that there was a modern film release in 2017 but I haven’t seen it… nor have I any real desire to look for images of this modernized monster. Using some vague recollection of the movie poster (before my time); and probably some influence from pictures seen of fellow pinball vendors; I set about painting my figure. In my minds eye; I wanted him to be green with a yellow chest outside of that; I just let the piece “speak” to me as I worked on it.

The first step I decided to do was to spray my figure with some Adhesion promoter so that the air bush paint would more easily stick to the figure. Here’s a picture of the figure attached to some scrap acrylic material as we wait for the promoter to partially dry per the can’s instructions:

While the promoter was getting ready; I custom mixed a light yellow color that I wanted to use for the chest. I mixed some transparent yellow with some pearlescent white and some Airbrush thinning reducer. I sprayed the chest area, face and hands:

I then mixed green for the body. When I painted my Romulan Bird of Prey for my STNG pinball machine; Michaels had some pearl green on clearance for $1.77. I mixed it with the reducer and sprayed the rest of the figure. I had forgotten the thermally set the yellow prior to applying the green so it wiped away when I got a little aggressive with the green:

This time I used a heat gun on low to thermally set the green and remaining yellow before moving on to the next color.

I resprayed the yellow areas and thermally set the color:

I used some Transparent Black I had on hand to fill (a small paint brush) in the mouth and eye pupils on the face:

I then mixed the transparent black together, transparent green and some pearl green to get a very dark transparent green. This was then applied to the thighs and sides of the body:

Finally, I used a paint brush to apply a little more black to the area between the legs. Once heat cured; I sprayed the whole figure with clear matte acrylic to protect the model from scratches and dust when back in the machine:

Overall; I’m extremely happy with how this figure turned out. Took about 3ish hours with all the heat treatments. One of the disappointments: now the Creature doesn’t actually show up very well in game. I suspected painting it would mean it wouldn’t show up behind the green acrylic in the PF – This is probably a secondary reason for leaving it white. I’ll post a picture of it later once I put some green led strips under the PF to light him up better.

Part 2 of this series; Painting “The Mummy” should be available shortly.

Xeltek SuperPro 280U/580U/3000U 64bit hack

A recent Ebay purchase of a Xeltek SuperPro 280U came with the following note that it was supported only in Windows XP and not under Windows 7. This post documents how to make this working on a modern operating system; like Windows 10 64bit. Luckily; all of this software was readily available via webcaches and polish electronic forums. I’ve pulled all the documents here in one place so you can easily replicate it. I believe the software is the same for the 580U/3000U but you’re mileage may vary.

Why do this? This programmer is still very functional as long as you have a USB port.

First you need to get the Xeltek software from their support site under legacy programmers. Go ahead and download the 32bit windows install package and the test software so you can prove your “hack” is functional. Direct links for the SuperPro 280U install software and the SP280u Test.

Next install the SuperPro software to a known directory. The follow the instructions in the SP280u test archive. See the readme.txt file which tells you to put the TSETUSB2.USB file in \algo5 of the installed program.

Now you need to install the hacked EzUSB drivers from Cypress. This was explained in’s webcache. That website seems to be down – maybe forever which is why I’m copying the relevant bits here for prosperity:

The older Xeltec range of USB Eprom programmers do now work on 64 bit versions of windows, since, according to their own website “working on 64bit platform requires tremendous effort from our side
So to save their programmers from all of this tremendous effect, here is how to make it happen
N.B. This has only been tested on my PC using my Superpro 280u with Windows 7,8 and 10 – it should work for you, but everything is done at your own risk!


In the download file, Here,  are the signed driver and support files.

If you need XVI32 you will need to download it from their website.


Xeltek use a standard USB interface chip, an Ez-USB FX2, originally made by Anchor chips, who were taken over by Cypress.

Fortunately, they only seem to have made a single change to the reference driver that was issued by Anchor / Cypress, so as long as a 64 bit version of that driver exists then it should be possible to use the eprom programmer on a 64 bit OS.

A clever guy (Here) has already created a 64 bit version of the driver to use with some other hardware that utilises the same chip, and also sorted out the necessary inf files to allow you to install it on various newer versions of windows. A small change to that inf file, so it recognises the identity of the chip within the Superpro, and that will install the driver. 

Another helpful guy, Doug, has now signed the driver file so that you no longer need to do any trickery to let Windows allow you to use the driver – many thanks to him.
finally, you need to make one change to the SP3000.EXE to allow it to work with EZUSB.SYS (rather than their version XEUSB.SYS), and for this you will need a hex editor. I use XVI32, a free download from Here. using this search for the text “Xeltekusb-0” (on the latest version it is at offset 0x9B344). This is the name of the driver that it is going to use, and so we need to change this to “Ezusb-0” and then pad the extra characters out with 00’s (Hex 00, not characters!). Save this change and coupled with the driver you should now be able to use your Superpro on the 64 bit version of windows.


I heard from a user about a problem with the signed Xeltec drivers. So in case you are having the same problem :-
“My new PC has windows 10 installed as UEFI. Installing it that way enables secure boot by default and saves the default keys to your motherboard. Secure boot adds another layer of driver authentication, which causes the Xeltec patched driver to fail.
In order to fix this, you need to disable secure boot (which is motherboard specific).
Once disabled, the driver plays nice. Only caveat – your system is now (technically) susceptible to rootkits and other forms of malware that attack your drivers. Not a huge concern if you’re not using fishy software.”
Thanks Bill

Obviously; those links are likely dead. So I did a google search and came to a polish site which had all the original files:

I registered with the site so I could download it. I’ve put the unaltered files on my Google Drive for public consumption:

UnRar (or use 7zip) and uncompress the Xeltek 3000U Win7x64.rar to a subfolder in your installation location. You are going to want to further unzip: to your installation folder. This contains a How To.txt file and several ezusb.* driver files. That howto file has most of the text from the Bill quote above. All I did was right click on the ezusb.inf file and click install. This installs the signed 64bit driver for use under Windows 10 64bit. 😀

Now uncompress SP3000.exe from the Xeltek 3000U Win7x64.rar archive. This is the hex edited executable discussed in the How To.txt and the Bill quote above. I renamed my original SP3000.exe to SP3000.exe.orgDriver in the bin directory and copied the new SP to that folder.

With that; the “hack” is complete. Now let’s test to make sure your programmer will function with it’s new Win10 64bit host. To do this; double click the new SP3000.exe and it should automatically detect the programmer (assuming it’s plugged in and turned on) with the new ezUsb driver. With no chips in the ZIF socket; follow the Xeltek instructions contained in the readme.txt file… regurgitated here:

Type “Xeltek” under search when choosing a device on your software. Under device name choose “####..222…“. Run all the test functions except “test_type“.

Each function should return OK! indicating the test passed. Here’s a screenshot of my completed test runs:

Hope this helps someone in the future.

Wear Prevention: Outlane Mylar Protection

Honestly; I’ve been neglecting my Stern Star Trek Pinball machine. I got it new-in-box and didn’t do anything to protect the outlane hole which feeds the ball trough. My machine has seen some play at various conventions like Texas Pinball Festival since I purchased it back in 2016. The issue is that the steel balls tend to wreck havoc with the clearcoat and wood under the clear coat. I helped mitigate this problem shortly after unboxing by installing a set of Cliffy protectors. At the time; Cliffy did not offer an outhole protector so my ball return hole did get any love. A couple of weeks ago; I looked and noticed some wear on my outhole. 🙁

Stern Star Trek Outhole wear

You can see definite wear on the front and left side edges. It’s not massive; but enough to warrant some protection. I debated getting a new Cliffy outlane protector; but it only protects the front side from wear. As a result; I decided to try my hand at designing my own protector which would be cut out of 2mil adhesive Mylar (polyethylene) using my new Vinyl cutter.

I began by tracing the area with tracing paper so I could get the basic layout easily into the computer. I didn’t have a lot of room to work with so I decided to bring the mylar up to the black keyline just above the out hole. This would give me a little extra grip and make it easy to hide within the art work. I also decided I would wrap the mylar around the outlane hole pinching it between the ball trough and the underside of the Playfield. Finally; I would protect all three sides of the outhole to the metal ball guide seen the foreground. Finally; I decided to protect the outside corners of the PF in a similar way to protect the edges leaving cutouts for the legs of the metal ball guides so they wouldn’t “wrinkle” when the guides were re-installed. This was my initial design – and remains the my property (read: copy protected):

Copyright 2019 - Outhole
Stern Star Trek Outhole – Mylar

My design choices were to add the round corners created by the endmill when the Playfield was created and then add rounded Vs on the lines were the mylar would roll onto another perpendicular surface. This should aid in preventing wrinkles from forming at those junction points.

With the design created; there wasn’t anything else to do but cut it on the vinyl cutter and install it. It’s going to be very hard to photograph this crystal clear mylar but hopefully you can see it if you click on the pictures to get a higher rez image. Here’s the top surface with the mylar installed:

Copyright 2019 - Outhole
Stern Star Trek Outhole – Top

You can barely make out the outline of the mylar along the black keyline as designed. Additionally you can see the mylar where it wraps around the outhole sides and the two sides of the PF. Hear’s a close-up of the mylar wrapping around the PF:
Copyright 2019 - Outhole
Stern Star Trek Outhole – Wrap Around

Finally; the underside of the pf; where the mylar wraps around to be pinched by the ball trough:
Copyright 2019 - Outhole
Stern Star Trek Outhole – Ball Trough

I reinstalled the ball trough, all the ball guides, and put it back together. No issues what-so-ever with the installation and the mylar has no noticeable impact to the ball. Additionally; this should help minimize any additional damage to the clearcoat near the outhole.

If you are interested in a protector for yourself; I’m offering them forsale at my webshop: Stern Outhole protector – Mylar

Announce: Frosted “clear” Drop targets

About 3 months ago; we announced on Pinside that we entered into a distorbution agreement with Pinball.Center to begin carrying their Frosted Clear drop targets for modern Stern, retro Williams, and old school Data East Pinball machines.

You can use these Drop targets anywhere you want to backlight them with LEDs but they have much better resiliency than the 3D varieties which were available a couple of years ago. Unlike the 3D printed varieties; these are injection molded out of Polycarbonate (Lexan) in Germany for maximum resilience until man can mass produce Transparent Aluminum.

To answer the question of ultimate resiliency; we sent a set of these drop targets to @vid1900 on Pinside to put them thru some checks. He reports that after 2 months of heavy commercial use, and over 900 games none of the sample drops have been damaged. You can read more about his honest review on Pinside.

We currently offer three styles of these “clear” drop targets in our store:

Already in Vid1900’s thread, several customers have begun to show how these drop targets enhance normally dark areas of their pinball machines:
Fytr on Pinside outfitted his Iron Maiden with our Clear drops.
Stern Iron Maiden Pinball
See more on Pinside.
roar on Pinside outfitted his The Walking Dead with our Clear drops
Stern The Walking Dead Pinball
but he went the added route of installing the stock decals over the drops. See more of Roar’s work on Pinside.

As expected; these drop targets are available for immediate shipment in our webstore:
Pinball Drop Targets

Announce: Translucent Pop Bumper bodies, Skirts, and Thingys

A little over a year ago; we began distributing Transparent / Translucent Pop Bumper Bodies manufactured out of Germany by Pinball.Center. We announce back then that we were the exclusive distributor for the North American American Market. These transparent pop bumper bodies are available in 9 modder friendly colors and should fit most modern Pinball machines:

  • Bally from 1988+
  • Williams from 1976+
  • Stern (including modern)
  • Data East
  • Sega

These pop bumper bodies were imported from Pinball.Center and will ship from Austin, TX to any North American address.

Cross-Referenced Part numbers include:

  • 03-7443-5
  • 3A-7443
  • Wico 19-0155
  • Stern 545-5197-00

You can purchase these today at our store:
Pop Bumper Body

Lately many people have been asking me when we’ll restock Clear Bodies instead of the frosted Clear we now offer. This is best summed up by this response:

I can’t commit at all on the Clear Pop Bodies; here’s the reason:

I was running low; so I ordered some more Williams Clear Drops, some GID Star posts, and 150 Clear bodies from Pinball.Center so I wouldn’t run out.
The Clear Bodies arrived in the frosted appearance:

Pinball.Center basically said I could return them; but they had no idea when (or if) they could fix their vendor to get them in Clear. I wanted to be upfront and honest with their appearance and didn’t want to leave no options for those people so I added the new color and put the Clear Out-Of-Stock. If you look at Pinball.Center’s original product photo – you’ll see that they pretty much consider the two equivalent.

As a result; I’m not sure I’ll ever be able to get true Clear again.
When I’m ready to reorder (maybe in Feb 2019); I’ll ask again – but I wouldn’t hold my breath for future stock.

About 8 months later; I announced the immediate availability of translucent pop bumper skirts. At this time they were only available in translucent Red and transparent Clear:

These Skirts at available in our store:
Pop Bumper Skirt

Finally, to round out our Pop bumper products; we announced our own version of the Pop Bumper Thingys available in both silver and gold glitter.

Both products are laser cut here in our facility in Austin, TX and gold is an exclusive color available only from our webshop. Because these are laser cut here; we can customize the design with any color acrylic available. If this interests you; please contact us.

The Pop Bumper Thing is available at our store:
Pop Bumper Thingy

Pin2k CPU Fan Replacement

When I first got my Revenge From Mars from a local Pinhead; the fan was clogged with dust and grime. At the time; I simply cleaned the fan, removed the sticker, and added some oil to the bearings. This lasted about 3months before the fan began to make some horrible noises because the bearings were shot. I “lived with it”; but it remained on my todo list.

For years; I had watched threads about Pin2k in Pinside… always feeling a little guilty I had not eliminated the risk that my CPU fan would die… overheat the cpu… and put my RFM in jeopardy of force converting to NuCore or Pinbox. Today was the day I vowed to resolve that noisy fan.

First; I did not want to buy NOS (new old stock) of some 50mm fan made back in 2000 or some china knockoff that wouldn’t last another 18 years. I wanted a high quality fan with very little noise; but a good performer. I’ve grown to like the Noctura brand of fans because they aren’t cookie cut china knock offs. Noctura does not sell a drop-in-replacement for 50mm fans. Going smaller usually means less air flow with a higher “whine” because the fan blades have to go much faster to move more air. So I decided that I was going to try and use the NF-A6x25 FLX 60mm fan:

and build an adapter to fit the larger fan over the existing heatsink. This blog entry documents my solution, provides a TAPR/NCLed DXF for my adapter, and links to a Shapeways implementation of my adapter my fellow pinball enthusiasts to use.

First, I removed the CPU box from my RFM and pulled out the existing CPU heatsink:

Stock Pin2k CPU Fan/Heatsink

Once I had the CPU heatsink free; I unscrewed the old FAN from the heatsink. This was done for two reasons;

  1. I need the heatsink to take caliper measurements in order design a 60mm to 50mm bracket.
  2. Eventually; I’d toss the worthless 50mm fan – but wanted to keep it incase I couldn’t find a working solution.

Obviously; the 60mm fan wouldn’t fit within the 50mm cavity of the heatsink; so I knew I wanted to use some 1/4inch clear Acrylic as an “adapter”. I went into qCAD resulting in a DXF file which I could then send to my laser cutter. I wanted to reuse the 50mm fan/heatsink screws and the 4 qty Vibration-Compensators provided in the Noctura kit. My second proto resulted in success and looked like this:

60 to 50mm Fan Adapter

Reusing the 4 qty 50mm countersunk heatsink screws; I attached the clear acrylic bracket to the top of the heatsink. Then I put the 4 qty Vibration-Compensators provided in the Noctura kit thru the acrylic bracket and into the NF-A6x25 fan. The whole assembly fit together quiet nicely.

60mm Fan Adapter – Test Fit

I carefully; reinstalled the fan-sink combo back onto the cpu and socket. This was a little tricky because the 60mm fan is bigger; but as you can see the whole contraption fits well:

60mm Fan Adapter – Motherboard Install

Conveniently; my Pinball 2000 motherboard had a FAN header right next to the cpu socket; so I simply attached the CPU fan’s 3pin PWM connector to that unused mobo connection:

60mm Fan Adapter – Fan Header

I powered up the Pin2k system on my bench with both the original and the new fan connected. !That old fan really needed to be replaced! This new fan is ultra quiet; I don’t think you can hear the fan over the PSU fan even when the box is open. You won’t be able to hear the fan at all when its in the backbox behind the backglass. Success!

I’ve decided release this design to the public under the TAPR Non-Commercial Open Hardware License which indicates:

You may make products based upon this design, provided you do not make more than ten units in any twelve month period for your personal use.

If you agree with the license terms; a DXF Drawing is posted here under TAPR/NCL license:
60mm to 50mm Fan Adapter Package

If you don’t have access to a laser cutter; you can 3D print this adapter from Shapeways:

Stern Star Trek: Custom Shooter Knob & Housing

A customer of mine graciously agreed to sell me his Shooter housing decal from aurich‘s Alternate decal set; as a result, I was able to finally finish my custom shooter housing and knob.

custom Star Trek Knob
custom 50th Anniversary Shooter Knob – Stern Star Trek

I had a shooter housing custom powder coated LE blue and installed the Decal. The knob is 3D printed at Shapeways from my custom design:

in polished Nickel and I powder coated it LE blue to match the housing.

A Star Trek 50th Anniversary Pin was then JB welded to the knob and it was encased in EasyCast Clear Casting Epoxy to give it a smooth surface for the palm of your hand.

Overall; I’m very happy with how it turned out.

Data East: Chase rope for Star Trek and Hook – Part 1

The Data East Chase rope lights used in two Data East Pinball machines (Star Trek: 25th) and Hook) are a huge problem on the game. So much so; that my Ebay-purchased game came with no rope lights at all. 🙁 This blog series walks thru my intention of recreating the chase rope lights – but made out of LEDs so they use less current, generate less heat, and can be used for decades without any issues.

First, some credit – Patofnaud on Pinside wrote a great tutorial on repairing these chase lights. I used this pinside thread almost exclusively for this blog series and if you happen to have the original rope lights; please take a look at his tutorial.

My game has no chase lights to repair; so I’m going to have to replicate the chase lights. I decided that I didn’t want to try and re-configure a standard off the shelf rope light because they likely don’t support doing a +12VDC common with three ground leads as discussed in Patofnaud’s post #1. Additionally; I don’t have exact specs of the rope light w/ regards to light spacing, diameter of the rope, ect. Since I’m going to have to recreate the lamps; I have decided to do a conversion to LEDs… specifically, using some “fairy light LEDs” which have recently become available on the market. I started by going to Hobby Lobby and buying a set of their battery operated lights using a 40% off coupon. Amazon has a whole bunch of alternate versions of this product… so you might be better off looking at Amazon if you don’t have a Hobby Lobby near you. B072NH2FQ1 seems to be a nearly identical match to what I got from Hobby Lobby.

These strings appear to be made of discreet 603 Warm White LEDs soldered to a common anode and common cathode. The LEDs are encased in a hot-glue like product to protect the LEDs from mechanical stress and help with water proofing. The fact that all LEDs are in parallel might end up being an issue because you can’t control the current into each LED. LEDs wired this way means that any variance in forward voltage drop (Vf) between the diodes in a series may mean that LEDs with low Vf would get more current that LEDs with higher Vf and could lead to premature failure of those leds. We’ll see long term if this becomes an issue with this project.

Taking apart the battery pack of the fairy LED light uncovered what I thought… A power switch and a 1/4W series current resistor of 15ohms. 3AA batteries supply 4.5V which is current limited by that 15ohm resistor. I did some quick measurements of the entire string and IIRC; the whole string took around 113mA with the 15ohm current limiter. I don’t recall what the series Vf was for the whole string.

Because the LEDs are powered with a 4.5V source; it becomes rather obvious that I can’t use these as a drop in for the 12V incandescent rope light originally in the machine. I’m going to need a conditioning circuit which will drop the 12V down to ~4.5V and provide some current limiting. I started by measuring my machine’s ramp to determine the approximate length of the chase lights. I measured with a piece of string to be about 15inches. The fairy LED lights have spacing of about 3inches which means that my largest segment would be about 15/3 = 6 leds, max. These 6 will become important for the series resistor calculations in the future.

Before I got to far into designing a voltage level shifter and current limiter; I looked at my machine. I couldn’t find the chase light connector shown in post #6 of pat’s thread. I couldn’t find it because the previous owner connected the left and right .156 connectors together with a Z-connector. That may mean there is now an issue with the chase light board (DE #520-5054-00 or #520-5054-01) in my backbox but I’m thinking connecting them together did no future damage since they are wired together in a OR configuration in the schematic manual. Meaning OUT1A is tied to OUT2A via the Orange/Black wire in the cabinet (See post #7, picture 1). I decided that Zconnector is a good place to put my Incandescent to LED converter circuit. My plan is to replace the Zconnector with a board which does the conditioning.

I decided I was going to abuse a LM1117 style +5V regulator to voltage shift the +12V common down to +5V common then use a series resistor to current limit for the LEDs. Since +12V is the common; I’d need to do a wired-OR configuration with a set of fast Recovery SCHOTTKY diodes to the OUT connections on the chase light board. I have no idea if the LM1117 vreg can operate properly with a v+ common connection; but I suspect it will have no issue given the frequency a which the lamps operate. Additionally, given the previous incandescent lamps had issues blowing the NPN Darlington arrays on the lamp chase board; I figured putting in a PTC resettable fuse would be a nice addition. My circuit took shape in eaglecad using Digikey as a part reference.

Here’s my original Fab A circuit, keeping in mind this is untested – but I retain all rights to this circuit for the moment:

Chase Light to LED
DE Chase LED conditioner

Some theory of operation:
D1&D2 provide some polarity protection – for paranoia. D3-D8 are the Schottky diodes which provide wired-OR back from the ground of the +5V regulator (U1) back to the chase light board’s OUT* connections.
C1, C2, C3 provide some filtering for the +5Vreg to help it maintain stability with the wired-OR configuration. D9 provides some additional protection for the Vreg – probably not needed; but extra insurance. R2 – R7 provide the series current-limiting resistors for the various LED strings. Why the different values of 13.3 vs 16.9? Well; my quick napkin calculations shows that there may be 5 or 6LEDs on the longest string and then one less on the shorter strings. I plan on connecting the longest string on the 1A & 1B lines while the shorter strings (with the higher resistors) will be on the others. F1-F6 are the resettable PTC fuses. The bidirectional LEDs at the bottom are monitoring the output of the chase light board to give me an indication the chase board is working properly. They will chase green if working properly. I basically created a small “Z-connector” board to condition these LEDs but also added some small connector boards to help me interface from the LED strings to a simple 4 pin 0.1″ pitch latchable connector. The idea is these smaller connector boards would be fixed to the end of the “rope lights” and allow for a quick connection.

A little background on the Series resistor calculations. Basically; Vf isn’t known for the parallel LED strings. You can’t measure Vf with the diode setting of a Digital volt meter which btw; my favorite is a Fluke 87 series meter. Vf according to my DVM is around 2.4V and we know that no current white leds operate at 2.4V for 20mA. Since I don’t know which LED the chinese put in these strips; I had to make an educated guess. To do this I went to and drilled down on warm white 603 LEDs, downloaded the table (using the button near the bottom of the page) and then imported the data into excel so I could get an average of the Voltage – Forward (Vf) (Typ) column. I calculated Vf ~= 3.23V. Armed with Vf, and the knowledge I wanted to operate the LEDs near their 20mA operational current so they would be their brightest I was able to calculate a theoretical series resistor. Here are the “knowns”:
Vf = 3.23.
Each LED should operate at ~18mA.
With the ground diode in the Vreg path… assume Vfdiode = 0.4V. This would cause Vout of Vreg to be 5+0.4V, or 5.4V.
“ground” will be thru the UL2003A darlington on the chase driver board. VCEsat = 0.9 min.
Assume 5 leds needed for longest string and solve using Ohms Law. R=V/I.
V = 5.4 – Vfled – VCEsat
I = 18mA * numOfLEDs in string or 18mA * 5
R = (5.4 – 3.23 – 0.9) / (5 * 18mA ) = 14.11 ohms
Subtract off typical Fuse resistance of 0.9ohms and you arrive at ~13.3ohms. Repeat the calculation for a 4 led string and you arrive at ~16.9ohms.

The only “gotcha” with this theoretical calculation is that what happens to the LED if we are drawing near 18mA? There’s no real ground plane or PCB to draw heat away from the LED. The only “heat sink” is the hot glue used to encase the LED and the wire LEDs connecting the LEDs. I’m hoping the low duty cycle of the LEDs will help keep thermal runaway in check. This is something I’ll have to watch in the final assembly. If LEDs start dying… we’ll know it’s either getting too hot… or the parallel LED VF vs current is a problem.

Here’s the Fab A boards as committed to OSHPark. This is their render of the boards as I don’t have them back from fabrication yet:

DE Chase Fab A (Top)
DE Chase Fab A (Top)

DE Chase Fab A (Bottom)
DE Chase Fab A (Bottom)

I’ll post more on the circuit boards in Part 2 when I get them back from OSH Park and have them built. We’ll see if my little experiment bears fruit.

Now onto the actual chase lights themselves. I thought about using polyurethane blue tubing from as I posted in Pat’s Pinside thread on post #19. But honestly, I don’t really feel like the blue rope light fits the ST:25th theme very well. To me; it looks like some attention getting feature to draw in the eyes of a would be quarter-dropper in an Arcade. Not that is a bad thing; I just figure since I’m not going to an have original rope light assembly with the proper Light spacing… I might as well try to make it fit the theme a little better. If not blue, then what? Well Clear is definitely an option… but it won’t really hide the led wiring very well. I had a lot of extra 1/2″OD, 1/4″ID rigid Acrylic tubing left over from the guide plastics from Star Trek: The Mirror Universe custom pinball project. I was thinking of doing that with some custom Acrylic etches on the tubing. The problem is that failed due to piss-poor-Management so I can’t really go there to use their rotary attachment on the Tortec. My new-to-me Epilog Laser doesn’t have a rotary Attachment, yet. Not sure what I’m going to do about that yet… Even if I get a Rotary… what would I put on the Tubing? Then there’s the issue of bending it properly… which shouldn’t be too hard given the Youtube videos for Hard Tubing in water cooled case tutorials.

Then I stumbled across ENT Corp on Ebay who seems to have colored versions of this rigid tubing available in cut-to-order. I went ahead and ordered 6 pieces of the smoke acrylic tubing custom cut to 15.25inches. After I experiment with the etching and try my hand at the clear tube bending… I’ll proably finalize the chase lights using the smoke tubing on the final machine.

That’s it for Part 1 of this blog series… I’ll start Part 2 when I get some tubing experiments done and/or when I get the PCBs back from OSHPark. For now, Peace and Long life…