Xeltek SuperPro 280U/580U/3000U 64bit hack

A recent Ebay purchase of a Xeltek SuperPro 280U came with the following note that it was supported only in Windows XP and not under Windows 7. This post documents how to make this working on a modern operating system; like Windows 10 64bit. Luckily; all of this software was readily available via webcaches and polish electronic forums. I’ve pulled all the documents here in one place so you can easily replicate it. I believe the software is the same for the 580U/3000U but you’re mileage may vary.

Why do this? This programmer is still very functional as long as you have a USB port.

First you need to get the Xeltek software from their support site under legacy programmers. Go ahead and download the 32bit windows install package and the test software so you can prove your “hack” is functional. Direct links for the SuperPro 280U install software and the SP280u Test.

Next install the SuperPro software to a known directory. The follow the instructions in the SP280u test archive. See the readme.txt file which tells you to put the TSETUSB2.USB file in \algo5 of the installed program.

Now you need to install the hacked EzUSB drivers from Cypress. This was explained in www.macros-arcade.com’s webcache. That website seems to be down – maybe forever which is why I’m copying the relevant bits here for prosperity:

The older Xeltec range of USB Eprom programmers do now work on 64 bit versions of windows, since, according to their own website “working on 64bit platform requires tremendous effort from our side
So to save their programmers from all of this tremendous effect, here is how to make it happen
N.B. This has only been tested on my PC using my Superpro 280u with Windows 7,8 and 10 – it should work for you, but everything is done at your own risk!


In the download file, Here,  are the signed driver and support files.

If you need XVI32 you will need to download it from their website.


Xeltek use a standard USB interface chip, an Ez-USB FX2, originally made by Anchor chips, who were taken over by Cypress.

Fortunately, they only seem to have made a single change to the reference driver that was issued by Anchor / Cypress, so as long as a 64 bit version of that driver exists then it should be possible to use the eprom programmer on a 64 bit OS.

A clever guy (Here) has already created a 64 bit version of the driver to use with some other hardware that utilises the same chip, and also sorted out the necessary inf files to allow you to install it on various newer versions of windows. A small change to that inf file, so it recognises the identity of the chip within the Superpro, and that will install the driver. 

Another helpful guy, Doug, has now signed the driver file so that you no longer need to do any trickery to let Windows allow you to use the driver – many thanks to him.
finally, you need to make one change to the SP3000.EXE to allow it to work with EZUSB.SYS (rather than their version XEUSB.SYS), and for this you will need a hex editor. I use XVI32, a free download from Here. using this search for the text “Xeltekusb-0” (on the latest version it is at offset 0x9B344). This is the name of the driver that it is going to use, and so we need to change this to “Ezusb-0” and then pad the extra characters out with 00’s (Hex 00, not characters!). Save this change and coupled with the driver you should now be able to use your Superpro on the 64 bit version of windows.


I heard from a user about a problem with the signed Xeltec drivers. So in case you are having the same problem :-
“My new PC has windows 10 installed as UEFI. Installing it that way enables secure boot by default and saves the default keys to your motherboard. Secure boot adds another layer of driver authentication, which causes the Xeltec patched driver to fail.
In order to fix this, you need to disable secure boot (which is motherboard specific).
Once disabled, the driver plays nice. Only caveat – your system is now (technically) susceptible to rootkits and other forms of malware that attack your drivers. Not a huge concern if you’re not using fishy software.”
Thanks Bill

Obviously; those links are likely dead. So I did a google search and came to a polish site which had all the original files: https://www.elektroda.pl/rtvforum/topic3353985.html#16553970

I registered with the site so I could download it. I’ve put the unaltered files on my Google Drive for public consumption:

UnRar (or use 7zip) and uncompress the Xeltek 3000U Win7x64.rar to a subfolder in your installation location. You are going to want to further unzip: sp3000u_x64_driver_signed.zip to your installation folder. This contains a How To.txt file and several ezusb.* driver files. That howto file has most of the text from the Bill quote above. All I did was right click on the ezusb.inf file and click install. This installs the signed 64bit driver for use under Windows 10 64bit. ūüėÄ

Now uncompress SP3000.exe from the Xeltek 3000U Win7x64.rar archive. This is the hex edited executable discussed in the How To.txt and the Bill quote above. I renamed my original SP3000.exe to SP3000.exe.orgDriver in the bin directory and copied the new SP to that folder.

With that; the “hack” is complete. Now let’s test to make sure your programmer will function with it’s new Win10 64bit host. To do this; double click the new SP3000.exe and it should automatically detect the programmer (assuming it’s plugged in and turned on) with the new ezUsb driver. With no chips in the ZIF socket; follow the Xeltek instructions contained in the readme.txt file… regurgitated here:

Type “Xeltek” under search when choosing a device on your software. Under device name choose “####..222‚Ķ“. Run all the test functions except “test_type“.

Each function should return OK! indicating the test passed. Here’s a screenshot of my completed test runs:

Hope this helps someone in the future.

Austin, TX: Star Trek Into The Darkness Charity Arcade

Alamo Drafthouse‘s Summer of 1983 and showings of Star Trek Into The Darkness hosted the Star Trek Charity Arcade during the month or so that STID was in theaters.

Each Austin Alamo hosted a Star Trek pinball machine
Alamo Drafthouse @Slaughter had the Star Trek: The Next Generation
@Village had the Star Trek: 25th Anniversary

@Lake Creek had the Bally Star Trek

In parallel, The Ritz hosted the Summer of 1983 Arcade with:
Pacman 25th (pacman, mrs pac, galaga)
Joust + Robotron
Defender / Defender 2 machine

It took me a while to count all those quarters. TBH; I gave up after rolling $400 in quarters. I talked with my bank and got them to feed it into their counter.

The Charity Arcade made $1092 for the <ahref=”

Dell Childrens’ Medical Center. I’m working with them to figure out where and how to deliver the money to them.

Thanks go out to the Alamo Drafthouse Team for making the Star Trek Charity Arcade an even better success ‚Äď this wouldn‚Äôt have been possible without their support.

Sega Star Trek Captain’s Chair Coinbox

Madaracs on the KLOV forums was kind enough to loan me his Sega Captain’s Chair CoinBox for measurement of the dimensions. With his coinbox I was able to modify the preliminary plans I had posted to my Captain’s Chair Restoration.

I have decided to release the plans to the public under the TAPR Non-Commercial Open Hardware License which indicates:

You may make products based upon this design, provided you do not make more than ten units in any twelve month period for your personal use.

If you agree with the license terms and are interested in the coinbox plans; they are here:

Sega Coin Box Plans (PDF)
Sega Star Trek Captain's Chair CoinBox Plans (PDF)

Thanks to Muel and Madaracs for the help enabling these plans. Now all I need to do is gain access to Austin’s TechShop to waterjet me some material from these plans.

Color Vector Pattern Generator

Almost a year ago I posted in my Star Trek Captains’ Chair worklog that I intended to modernize a old XY Pattern Generator design on the interwebs.¬†Many of the guys on VectorList provided valuable insight into the interworkings of the circuit… and provided many layers of helpful advice.

The result was a working prototype board from BatchPCB.com as a dual sided board. Surface Mount ( yes; I can hear the screams of horror ) as I wanted to minimize PCB size and thereby cost.

There were several key learnings that I’ve noted while building, debugging, and using the Vector Pattern Generator.¬†These learning were as follows and have been incorprated into the FabB design:

  1. The clock generator circuit (3.578MHz xtal) and U1ABC was not “locking”. This was due to the buffered logic of the newer 74HC* logic. Some research on the internet indicated I needed a 150pf cap from pin1 U1A to ground to allow the clock generator to exite enough to lock.
  2. The -12V buck converting power supply wasn’t outputing the correct voltage. It’d start out at ~11V…. the drop to ~5V over several minutes. On my debugged board; shorting R26 (10meg ohm) allows the -12V to become rock steady at -11.8V. Unsure here; the Maxim EE sim was very specific on the 10meg ohm value… but the maxim datasheet indicated two modes for VL to operate in. So for now will error on the practical side.
  3. The 5V regulator did not have enough copper to heatsink to. FAB B has a large 5V copper heatsink built into the board for the linear regulator. For my prototype; I thermal epoxied a small heatsink from a old motherboard onto the top of the regulator to give it some thermal sink.
  4. The Linear POT datasheet was missing details regarding the LED side of the POT. One hole was off and was moved to match the device.

I also included the following “Nice to Haves” into the FabB design:

  • Retrofitted EPROM sockets to enable A11 for a 27C32 eprom(s)… allowing for more user designed test patterns.
    NOTE: A11 is hardwired to high to match 2716 eproms configurations. No clock/decode is provided for A11. Future FabC work if a solution can be found.
    At this time you can use either 2716 or 2732 eproms in this design.
  • Renamed topside adj pots to indicate X and Y.
  • Converted to 3pin jumpers so the jumpers can be¬†mechanically¬†sound when output swing is not shorted.

I have decided to release my portions of this design under to the public under the TAPR Non-Commercial Open Hardware License which indicates:

You may make products based upon this design, provided you do not make more than ten units in any twelve month period for your personal use.

If you agree with the license terms and are interested in the FabB schematics; they are here:

Vector Pattern Generator: Fab B Schematics(Click here to open as PDF)

For those without PCB layout tools; a bare PCB is available from the batchpcb service for under $65. You can purchase the boards from this link:

The Bill Of Materials (BOM) of the board is available from Digikey for $75.51 (as of this post).
A bom is included with the schematics PDF above, but An XLS file with the digikey part numbers with the complete package of the materials above as a single download: XYpatternFabB_pkg.ZIP
You will need to source your own 2716 or 2732 EPROMs as Digikey does not carry them. You’ll also need to source your own 14-16VDC wallwort … you may already have a donor in your parts bin leftover from a defunct¬†piece¬†of equipment.

ROM images for the EPROMs can be downloaded from several sources. Hint: Do a search for XY ROM images .zip in Google.

Use the ROM images as-is for 2716 EPROMs. For 2732 EPROMs; just dup the roms using the following dos commands (as an example):

copy /B X.BIN+X.BIN x32.bin

/B is important as it tells copy that the files are binary, not ASCII files.

The Author is still using the FabA prototype; he has not yet built FabB so YMMV.  The changes from FabA were relatively simple; so building these should be a low risk.

The active components (switches, linear pot, adjustment pots, jumpers, and video connector) are all populated on the reverse side. This will allow me to put the board on standoffs and a acrylic top on the device to protect it from dust/flying multimeter/scope probes.

The board is still quite big even with the surface mount¬†components¬†measuring 5.1×3.9in tall.¬†By far the largest parts on the board are the EPROMs… maybe one day I‚Äôll figure out how to move the EPROMS into a single¬†EEPROM device and surface mount it.

So; what does the Fab A prototype look like?

Click to see higher rez pictures

Vector Pattern Generator: Primary side

This is the primary side; which faces the workbench in normal operation.

Vector Pattern Generator: Secondary side

This is the secondary side. It becomes the “top” of the unit so the user can adjust settings and the like.

Please Note: This implementation is not perfect… there are some issues with the vector generation that I haven’t been able to debug.¬†The imperfection does not really limit the functionality; as you can easily converge and debug a vector monitor with the vectors.¬†I am hopeful someone can help me debug the issues so we can release a better project long term.

Overall the generator worked quite well as I was able to get my ElectroHome G08 monitor converged.

Vector Pattern Generator: Box pattern

I can’t explain the center vectors… nor why the lines become squiggly. They don’t move; it’s always that way.

Vector Pattern Generator: Cross pattern

Strange that the site pattern doesn’t seem to suffer from odd vectors.

Vector Pattern Generator: Box & Cross pattern

Vector Pattern Generator: Horizontal Lines pattern

Vector Pattern Generator: Vertical Lines pattern

Vector Pattern Generator: H&V Lines (crosshatch) pattern

As you can see; the generator works well enough to converge a vector monitor…
At this point I’m not sure if the odd vectors / none straight vectors are the result of a software problem (EPROM images) or a hardware problem.
It’s possible the software isn’t reacting well with the faster hardware (HC logic, better opamps); but unsure.

Things I still need to do [if I ever find the time]:

  • check the +12V portion of the buck converter. Right now I’m using the backup +12V linear regulator (U9).
  • Create an enclosure to house the unit.
  • Figure out how to clock A11 to enable full 2732 support; thereby more test patterns.
  • Figure out why the vectors aren’t “clean”.

Austin, TX: Star Trek Arcade for Dell Children’s Hospital

Please come by Alamo Drafthouse’s Summer of 1982 showings of Star Trek: Wrath of Khan

during the week of June 3rd to June 9th. On location at:

Alamo DraftHouse: The Ritz
320 E 6th Street, Austin, TX 78701

there is a Star Trek: The Original Series Arcade setup to collect quarters for the Dell Children’s Hospital. Machines On location:
1979 Bally Star Trek
1991 Data East Star Trek
1993 Sega Star Trek video arcade machine

—Update 7/9/2012—

After some personal health issues; tonight I finally got around to doing final count of the quarters. The Summer of 1982 Charity Arcade made $146 in quarters. That amount was submitted tonight (7/9/2012) to the Dell Children’s Medical Center of Central Texas – Area of Greatest Need via their online donation process.

Thanks go out to the RITZ Alamo Drafthouse Team for making the Star Trek Charity Arcade such an awesome success ‚Äď this wouldn‚Äôt have been possible without their support.

DIY Arcade Leg Lever Plates

I knew this was going to happen; When I first got the wood shell for my Sega Star Trek Captain’s Chair¬†–¬†Someone had already ripped several of the Leg Leveler T-Nuts from the wooden bottom. I figured – hey; can’t be a real problem so I epoxied in some new T-Nuts and went off to Texas Pinball Fest ’12 . Needless to say; three of the T-nuts didn’t make it back to Austin. ¬†Call it carelessness; or whatever, but I had to fix this.

T-Nut damage (photo by SaminVA on KLOV)

When I first saw the original t-nut design; I thought it was stupid. The tnuts won’t hold… and neither will those two massive staples the put over the Tnut. If the nut can be pulled; so will the staples. Besides; it’s not like the sell those big staple guns at Harbor Freight or any home improvement store.

I whipped out Corel Draw and laid out some simple plates to “improve” the design. My goal is to make the t-nuts resistant to torque forces while keep the plates simple. Here’s my solution to help keep the T-nuts in place.

I have decided to release this design under to the public under the TAPR Non-Commercial Open Hardware License which indicates:

You may make products based upon this design, provided you do not make more than ten [sets] in any twelve month period for your personal use.

Suggested materials:

  • 3x3x0.25 inch poplar sheet
  • 5minute epoxy
  • white Gorilla Glue
  • 1/4″ Crown Staples (18 gauge, 1″ long)
  • 3/8″-16 T-Nut (McMaster Carr¬†¬†#90975A031 )

The first three items were sourced from Lowes Рbut nearly any home improvement store should carry these items. The Staples were sourced from Harbor Freight for a previous restoration project.  The T-nuts from Mcmaster Carr for the original Sega Star Trek restoration.

The design I came up with is as follows:

TAPR/NCL Leg Leveler Plates

I cut the poplar sheet to fit to 24″ length so it would fit on my Laser table. Ran the Laser cutter at 50% power, 1.6 speed, 250 pulses per inch (ppi) to cut on the red lines. The Etches were vector engraved at 40%, 10 speed, 500ppi. Was it necessary to laser cut – heck no, but if you have the equipment; why not use it? Took two passes to cut through the 1/4″ poplar at these power levels.

You can download a full package ZIP file from:
Leg Leveler Plate Package
which contains the Corel Draw file and measurements in PDF form.

After Laser cutting; I had these nice plates. Since the wood on the bottom of my Chair was fairly beaten up in a couple of cases; I needed to secure the TNuts with more than just a hammer. I mixed the 5 minute Epoxy per directions at 50/50 ratio and coated the inside of prongs with the epoxy; then hammered in place. I coated the nut with more epoxy in an attempt to secure it better to the wood. Here’s an example of what I did to a friends dedicated Upright Star Trek machine which had simular issues:

Epoxy & wood filler curing on T-Nut

In this picture; some wood filler was used to help secure some missing wood from where the tnuts were ripped out. Be sure not get any epoxy in the threads of the tnut… one way to do this is to run a old leg lever into the hole while the epoxy is setting.

The epoxy sets in 5minutes; but takes a minimum of 1hr to reach some strength; so I let the epoxied Tnut set for an hour and played some Star Trek Pinball.

The plate will be installed with the arrow facing the outside edge of the machine. For the Captain Chair; the orientation of the arrow doesn’t matter as the tnuts are far enough inside the machine to not matter. For the Dedicated upright machines; the Arrow side is 0.1inch shorter; so it will not overhang the front of your machine.

After the hour; I dampened the base of the machine and the plate with some water per directions on the Gorilla Glue packaging. I used the White version; because it cures in about 30-60minutes. I put a spiral pattern on the wood plate and stapled it in place with the 1/4″ crown staples. The Staples provide the clamping pressure while the glue sets.

Plates on Upright Star Trek machine

For the first 5 or so minutes; watch the foaming action. Clean up any over spill of the foam – particularly in the hole near the tnut. After about 5minutes the foaming should stop and you run that same used/scrape leg lever into the threads to keep the hole accessible for your new leg bolt when completed. I used a large blade of the screw driver to scoop out the foam. I put about about 4 staples in an X pattern outside the 1 inch etch hole; which represents the metal Tnut which you don’t want to try to drive a staple into. ūüėČ

I put about 10-15 staples in the plate after initial orientation check – these staples may seem excessive; but I want to secure the wood plate to the bottom of the machine and provide a good even clamping pressure for the gorilla glue to dry. As the package says “Strength of the bond line improves with better clamping.”

Closeup: Plates on Upright Star Trek machine

Wait about 1hr for the gorilla glue to strength… At this point you can gently set the machine back on it’s legs. If you can wait at least 24hrs before any excessive moves – this will allow both the epoxy and the gorilla glue to reach full strength.

Oh; and don’t forget your new leg levers:


This plate should be nearly in-destructible; which could prove a problem if the tnut ever needs to be removed. Not sure why that would need to happen – comments / suggestions?

FreePlay 555 Coin Circuit

My Sega Star Trek Captain’s Chair is destined to be present at the 2012 Texas Pinball Festival. As a result; the game needs to have a FreePlay feature (IE a way for the public to play the game without needing quarters). I know Sega Star Trek has a freeplay rom hack available; however, at this moment, VectorLabs isn’t supplying freeplay roms with their devices. I haven’t spent enough time with the multi-vector boardset to determine how easy/hard it would be to convert to Freeplay. As a result; I wanted a simple inexpensive way to credit up the machine when the user pressed the Start button (1UP).

I toyed with the idea of using a cheap 8pin ATMEL microcontroller; but decided a simple 555 timer could be developed to do most of the heavy lifting. In the end I decided to go with a dual 555 timer (NE556) in a cascaded mono-stable configuration. The circuit features:

  • PowerOn Reset to “credit up” a single credit when power is applied to the machine. Jumpered feature.
  • Ability to drive COIN_NO signals
  • Ability to “interrupt” COIN_NC
  • Can be alternatively stuffed for AC power supplies (6.3VAC GI circuits in Pinball Coindoors).
  • Jumper configuration to “disable” circuit.
  • Barrier Diodes to help prevent “installation error”.

I have decided to release this design under to the public under the TAPR Non-Commercial Open Hardware License which indicates:

You may make products based upon this design, provided you do not make more than ten units in any twelve month period for your personal use.

Schematics :

Click to view FreePlay 555 Schematics in PDF

The first timer conditions the active low switch connected to J2-3 (1P [aka the start button]). On the Sega vector hardware; this signal is tied high to 5V via a 2.2K pullup resistor. The start button connects momentary grounds at this signal. The Trigger on the 555 timer is also triggered when the voltage at pin 6 transitions below 1/3VCC. D4 protects the cpu board by preventing current from flowing back into the cpu board. This timer “de-bounces” the switch which sends a single long pulse via OUT1 (pin 5). This timing is created by TA = C6*R4 or ~242mS. I’ll explain the function of R5, JP3, D1, and C7 later.

OUT1 drives the “armed” LED to notify the user/debugger that a “start” pulse was received. OUT1 is coupled to Timer2 via C4 and R6. The purpose of these components is to provide a “negative” trigger pulse at the falling edge of Output. Timer2 then drives based upon TB = R1*C1 or ~60mS. This is the coinup signal which is sent to the coin circuit of the arcade machine. 60mS was derived from measurements of my acutal Star Trek Captain’s Chair by dropping a quarter into the slot via an Oscope.

OUT2 (pin9) drives Q2 and Q1 respectively. When not processing “start/coin up signals” Q1 is “active” providing conduction between the CPU Board and the Switch (PNP active when base is low). On the sega star trek; I found that I had to interrupt the NC signal of the switch in the coin door to get the cpu to “detect” a coin from our COIN_NO (J2-4) – Q1 provides this interruption. Speaking of NO, Q2 goes active when OUT2 outputs a high… which drives a “low” to the COIN_NO. In the Vector machine; COIN_NO is pulled high thru another 2.2k resistor and drives the !Set signal of a Set/Reset Latch made out of NAND gates. Incidentally; the NC signal drives the !Reset signal. The Q output of the NAND gate drives the clock of a D latch which drives the interrupt pin to the cpu board.

I promised to talk about the R5/C7 combo. These components control the “poweron” coin up timing. TpwrCoin is a function of U2’s timing and R5*C7 which is basically ~1.2seconds. U2 is a ActiveLow microprocessor supervisor IC. It monitors the 5V powersupply and holds !RST low for about 150mS. This allows the top of R5 high thru a 5.5k internal pullup resistor when the device is non-active. Meaning U2 will drive RST high on each timer after 150ms once the 5V rail is at least within 15% of the 5V target (4.25V). This effectively provides a “credit” signal to the game about 1.2seconds after the power button is pressed (for initial credits). In theory; this circuit can be disabled by removing JP3’s shunt.

JP1 provides a mechanism to “disable” the freeplay circuit. IE virtually removing the circuit from your game. Use this in position [2-3] to disconnect the timers from the bases of the transistors which should return the game to normal operation. IE if you want to start charging people money. I plan to use it to enable money when I take it for charity work.

Please be aware; this circuit still allows the coin shutes to work… even if the circuit is enabled. This was intentional.

The PCB is designed as a two layer PCB with through-hole parts on the top layer to enable those less skilled with a soldering iron to build the circuit.

FreePlay 555 Fab A Top Layer w/ Silkscreen

FreePlay 555 Fab A Bottom w/ Silkscreen

For those without PCB layout tools; a bare PCB is available from the batchpcb service for under $14. You can purchase the boards from this link:

The Bill Of Materials (BOM) of the board is available from Digikey for $9.02 (as of the time of this post). A bom is included with the schematics PDF above, but An XLS file with the digikey part numbers with the complete package of the materials above as a single download: FreePlay555_pkg

The author’s prototype was built from mostly RadioShack parts he had in his parts bin including the breadboard. He intends to replace this with a PCB from batchpcb in a few months.

Installation note: You need to make sure this circuit used the same voltage rail of your cpu board. The authors’ G08 wiring harnesses did not follow either the Cockpit (which is correct) schematics or the Upright harness (which is incorrect). The J4/P5/p12 harness¬† shows that the cockpit connects the coindoor lamps to the +5V rail at P5 pin6 and pin8. However, The author’s harness had it connected to the -5V rail which is BAD and will prevent the circuit from working properly (and possibly damaging your machine). The upright schematic shows that +5 and -5V goes to the lamps for 10V… also bad.
Either wire up a new +5V signal to this board; or correct your wiring harness to be like the schematics of the cockpit. Seriously – go double check it.

I wired in this circuit into the coin door harness so the board can be bolted to the inside the door. You’ll need to “cut” the NC wire of one of your coin switchs and put this circuit between it at J2-5 and J2-6. Then wire in the NO signal at J2-4. The Start Button goes to J2-3, the +5V rail to J2-1, and Ground to J2-2.

The circuit works as expected in my machine…. providing an inital “Free” credit upon powerup and then providing additional credits each time the start button is pressed (after the game starts). If you want more than one credit; the circuit can be redesigned; or you can press start multiple times during your “inital” game. ūüėČ

I’m fairly sure this circuit can be adapted to any arcade machine. I provided a bridge rectifier stuffing option at B1 to enable “AC” voltage inputs from 6.3V AC.¬† Or Jp2 can be “bridged” with solder to enable 5V to via the D3 shottkey diode.¬† I plan to test this circuit on my Bally Star Trek Pin once I get the PCBs back.

Enjoy… I’ll post more pictures when I get the PCBs back from batchpcb.

Star Trek Red Alert Audio Trigger

For those following my Sega Star Trek Captain’s Chair restoration; I replaced all the bronze plexiglass with some newer Transparent Grey Acrylic which did not have scratches. One of these peices was featured in the Restoration Worklogs at AustinModders.com or KLOV.com where I custom laser etched schematics of the Klingon D7 crusier and the Nomad Probe:

At the time; I predicted that the etch would not show up well once it was installed in the chair:

Sadly; that prediction came true. As a result; I decided I wanted to find a way to lite the etch with LEDs. SeaWolf on KLOV mentioned to me that he planned on lighting his Chair with some red lights to give it a “battle stations” feel while playing… I told him at the time; I’d proably steal his idea … which is the update your reading about now.

To light the Etch; I decided to create a Red Light bar under the custom Black Corner piece I created when I destroyed mine. But before we go there; I had to decide HOW to create the light. I decided I wanted mine to “activate” when a new game was started and then automatically turn off when the game was finished. I don’t have access to the Star Trek source code; so a software hack seemed problematic. Hummm… What’s the next best thing? Audio! With the exception of attract speech from Scotty and Spock; the instructional videos are silent. So I decided I wanted my machine to go into “Red Alert” Mode when real game play audio starts.

The Red Alert Audio circuit was born. ūüėČ I spent several nights running spice simulations and came up with this circuit which I’m donating to the public under the TAPR Non-Commercial Open Hardware License which indicates:

You may make products based upon this design, provided you do not make more than ten units in any twelve month period for your personal use.

Schematics :

Click to view Red Alert Audio Schematics in PDF

The only IC in the circuit is U1, a dual JFET opamp – TL062P which operates from a single supply at ~12VDC. U1A makes up a 13.5x amplifier to amplify the ~100mV speaker signal from J1-1. The amplifier operates in non-inverting mode; so the gain is derived from 1+R9/R7. R6 is a series resistor intending to limit the loading of the audio amplifier (prevent distorition) and impedance match closer to the that of the 8 ohm speakers present in the upright version of the Sega Star Trek. D1 and D2 provide over/under voltage protection for U1A; limiting pin3 to 12+0.7V and ground (-0.7V) – a real possiblity given the audio amp is powered from a split supply @+/-24V. C2 is a DC blocking cap to prevent our single supply opamps’ bias voltage from loading the sega’s audio amps. R10 provides a high resistance path to our bias voltage of ~6VDC.

The second opamp (U1B) operates in comparator mode; comparing to the voltage divider made up of R4 and R5. V+U1B is (R5*Vcc/2)/(R5 + R4) or 100k*6V/(110k) or 5.46V. If we have no input audio; Pin1 floats above our bias of 6V; forcing the comparator to drive low providing no voltage to the remaining circuitry… effectively an off. Once the amplified input exceeds (6V-5.46V) 546mV; charging current is sent to D3. For those paying attention; 546mV /13.5V/V… means the input voltage at J1-1 must exceed 40mV regularly to charge the capacitor at C1. Empircal evidence on my Chair indicates that “Thrust” alone generates ~100mV at Pin3 of the U1A. Ofcourse your mileage may vary depending on a number of factors including your current volume level.

Once Pin7 of U1B begins to provide a voltage it is channeled to the RC circuit made up of R2&C1. Since the comparator swings between ground and ~+12VDC; it take nearly zero time for the capacitor C1 to charge to full capacity ~R3*C2 or 3.5mS. D3 provides blocking to prevent U1B from loading the RC circuit and R3 provides load resistance to prevent “shorting” the opamp to ground while C1 charges. Once U1B turns off; the RC circuit becomes a voltage source for M3. R2 slowly drains C1 meaning Toff = R2*C1 or ~8.6seconds. This time delay is necessary to ensure the red alert bar doesn’t go off in the middle of a game… IE between Sectors.

R1, Q2, and Q2 make up a BJT Current Mirror with M3 becomming the “on/off” switch for said mirror. When the gate exceeds approx 3.3VDC; M3 turns on conducting R1 to the top of Q1. Since we tied V+ (J2-1) to the 12VDC PSU in the sega G08 Card Cage; We can calculate the reference current into Q1. Iref is (V+ – Q1_VEB)/(R1 + M3_Rds); assume Q1_VEB=0.7V and M3_Rds from datasheet is 5ohm max. Iref is (12-0.7)/(681+5) or 16.5mA. Given Q1=Q2; ILED @ Q2 (J2-2) is 16.5mA; meaning we now have the means to pull 16mA thru up to 5 LEDs. Given my planned use is ~2V super bright Red LEDs; we can fit at most 5 LEDs in the leg of the current mirror before we run out of voltage. Q4 is a secondary Current Mirror “channel” to allow me to drive another 5LEDs… so I now have a means to drive 10 LEDs in the Red Alert Lightbar.

The powersupply for the circuit is made up of D4, C4, and C5. D4 provides a blocking diode incase I screwed up the wiring. C4/C5 provide filtering given the 12VDC source is about 12feet away. D5, R11, and Q3 make up a simple linear regulator to derive the 6VDC (VCC/2) biasing voltage to U1.

Whew! – clear as Mudd? There was some detail there; hope some of it made sense. ūüôā

The PCB is designed as a two layer PCB with through-hole parts on the top layer to enable those less skilled with a soldering iron to build the circuit.

Red Alert Audio Fab B Top Layer w/ Silkscreen

Red Alert Audio Bottom w/ Silkscreen

For those without PCB layout tools; a bare PCB is available from the batchpcb service for under $15. You can purchase the boards from this link:

The Bill Of Materials (BOM) of the board is available from Digikey for under $6 (as of the time of this post). A CSV file with the digikey part numbers is here: RedAlertAudio_FabB_bom.csv

Here’s a package of the materials above as a single download: RedAlertAudio.zip

Here is the the prototype assembled:

Now I needed to find a way to mount the 10LEDs under the black corner piece. This was done by laying out a 1inch strip of Red Acrylic in Corel Draw and laser cutting said peice:

I decided the LEDs would be wired as a “circuit” on the Red Acrylic. My LEDs are 5mm in size; so these would edge light the 1/4inch red acrylic. I put in 40mil traces in the design which are etched on the laser cutter to give us groves to put the LED leads in:

5 of the LEDs were placed on the right side with the Cathode of LED1 at the far left side end. LED2’s cathode is wired to LED1’s Anode repeating until the LED 5’s Anode which is then wired back to the left hand side. When the LEDs touch; they are soldered in place. When they don’t touch a piece of Adhesive red rework wire is soldered between the leads:

The Anode is wired back to the left side by the red rework wire. The Anode of the second 5 LEDs is then tied to the Anode of the first 5LEDs and the cycle repeats in reverse until the cathode of LED1 is at the right most side. It is then tied with a peice of Black adhesive rework wire back to the left hand side. This provides a “single” connection side for all the LEDs.

Here’s the finished Circuit on Acrylic:

I twisted about 12feet of yellow and black wire together and wired it into the connector on the G08 PSU at the +12VDC lines; it terminates on pin 1 of J1. The LED connections also terminate on J1. I drilled a couple of 7/16″ holes on the right side of the chair near the speaker using the circuit board as a template; making sure not to go all the way thru the side wood – just deep enough for the hex standoff threads. I then tapped these holes with a #6-32 tap; and placed a set of #6-32 hex standoffs in the holes. A couple of #6-32 screws and the board is now mounted at the top of the chair:

I found that I didn’t need to wire the speaker ground from the PCB to the speaker; instead only wired from the + side of J1-1 to the + side of the speaker. A small 7/16″ hole was drilled thru the wood to allow the 3 rework wires to come thru to the PCB. Given rework wire is fragile, small, and solid core; I put about 3″ of stranded 26 gauge wire before the crimp style connector. All of the excess wire was tye-wrap anchored to side of the wood -leaving plenty of “service loops” to enable future changes.

So… was it a success?

Does it Activate as expected?

While the circuit works as expected; it fails to deliver the intended effect of lighting the Window etch properly. Still a cool effect; one I’ll keep… but I’ll need to give the etch lighting some more thought. I’m also going to try and increase the current thru the LEDs by adjusting the R1 reference resistor. The LEDs should be able to handle close to 20mA (package says 24mA max); so the increase in current should brighten them up a bit.

Star Trek HAPP CoinDoor Red Alert Indicator

On my Sega Star Trek Captain’s Chair restoration; I had to install a HAPP Coin Door¬†because I’ve been unable to¬†locate an original door. This Restoration is featured at¬†AustinModders.com¬†or KLOV.com for those that are interested in the complete project. Anyway, while installing my custom Coin Door inserts; I decided I wanted to modify the stock HAPP coin “guides”. The stock guides look to be black ABS and well … just don’t do it for me. The stock guides are shown here:

you can see the tiny little square just above the coin slot. This is the area we are going to target with this modification. Once you take apart the coin door; you’ll see guide is a piece of formed black abs:

Once I had this guide out; I measured it using a pair of Digital Calipers and layed it out in Corel Draw X4:

The “nubs” would be laser cut out of 1/8″ Red transparent Acrylic and the blanks would be cut out of black opaque acrylic.

The top of the red “nub” was sandblasted to give it a frosted looks so it’d defuse the light as it exits the nub. When assembled the new guide looks like this:

A 1206 Red LED was soldered into the red acrylic’s pocket with red rework wire attached to the anode and black to the cathode.

I need to drill the coin chute to¬†route the LED’s wires:

and I route the wires out the top side of the chute:

Now that I have the LEDs wired in… what am I going to use them for? Well; I decided I wanted to run the LEDs simular to the¬†Series’ Red Alert indictors I viewed a couple of youtube videos and did some wiki searches; but couldn’t find a “factoid” which gave me the timing of a TOS Red Alert indicator. Therefore; I just decided to make timing which would be pleasing to my eye. If anyone knows for sure a flash target; let me know or leave comment and I’ll figure out the correct timing circuit to flash at that rate.

Anyway; I decided to go with a somewhat simple 555 timer circuit. I have decided to release this  design under to the public under the TAPR Non-Commercial Open Hardware License which indicates:

You may make products based upon this design, provided you do not make more than ten units in any twelve month period for your personal use.

The 555 timer operates in Astable mode governed by R1,R2, and C1.

Schematics :

Click to view Red Alert Indicator Schematics in PDF

¬†The current implementation of the circuit has an “on” time of ~2.6 seconds and an off time of ~1/3 of a second. There is a RC timer made up of R3 and C2 which allows the LED to “wink” into it’s on state. LEDs D1 and D2 are driven by the 2N3904 transistor and wink on at the same time… Rather than do a current mirror; I decided to let D2’s current ~= D1s current given the transistor’s common-base current gain… IE alpha = beta/(beta+1)¬† which¬†@ ~20mA the 3904’s beta is a minimum of ~90… so alpha is .989 the current of D1. The circuit uses the RST pin of the 555Timer to add additional stability by putting a reset delay on the flipflop in the 555 at ~5seconds. Overkill; proably – but should be very reliable.

The current in the LEDs is controlled by R9 a series resistor intending to limit the current. It was emperically derived using SPICE as a starting point… and then the circuit breadboarded to maximize to 18mA of current flow. D4 is a schottky diode to protect the 555 from reverse wiring mistakes. The LEDs were left unprotected because they and the¬†BJT¬†are diodes … so shouldn’t be impacted by reverse wiring mistakes; additionally, the LEDs voltage drop is already ~2V.. so¬†the 0.1-0.3V voltage drop of D4¬†might effect brightness.

The PCB is designed as a two layer PCB with through-hole parts on the top layer to enable those less skilled with a soldering iron to build the circuit.

Red Alert LED Fab B Top Layer w/ Silkscreen

Red Alert LED Bottom w/ Silkscreen

For those without PCB layout tools; a bare PCB is available from the batchpcb service for under $11. You can purchase the boards from this link:

The Bill Of Materials (BOM) of the board is available from Digikey for under $6 (as of the time of this post). A CSV file with the digikey part numbers is here: HappLEDWink_r2.bom.csv

Here’s a package of the materials above as a single download: HAPPBlink_pkg.zip

Here is the the prototype assembled:

Next I needed to mount the PCB inside the coindoor. Since this is a modern replacement HAPP door; I decided to drill and put some #6-32 hex standoffs inside the door. I taped the holes and also added some epoxy to keep the standoffs in place:

I mounted the PCB:

The rework wire is self adhesive; which made it easy to route the led wires back to the PCB and secure it to the reverse-side of the coindoor.

Last but not least; I connected the power to the +5V circuit at the base of the 555 lamp on the coindoor. the lamp circuit on the Sega Star Trek is tied to the +5V PSU… it isn’t 6.3VAC like Pinball Machines.

Here’s the circuit installed and running:

Want to see it in action? Check out our YouTube video:

Custom Coin Mech Reject Art

Having been inspired by Tighe‘s KLOV post on Custom Coin Mech Reject Art – I decided to create some Coin Reject art for my Arcade machines; where applicable based upon his designs. This PDF is provided to you under the TAPR NCL License; which allows you to create and modify up to 10 copies in a 12 month period.

The following Machines are included in the PDF:

  • 1982 Sega Star Trek w/ HAPP CoinDoor (Vector Arcade)
  • 1991 Data East Star Trek: The 25th Anniversery (Pinball)
  • 1993 Williams Star Trek: The Next Generation (Pinball)
  • 2002 TeamPlay Star Trek Voyager (Raster Arcade)
  • 1999 Williams Revenge From Mars (Pinball 2000)

Download the PDF and print without page scaling to get the correct size:

For best results; Print to 8.5×11″ media on a color laser printer.
Tighe prints to standard paper while I experimenting with color laser transparency material.

Download: CoinReject Star Trek n RFM

Here’s an update to show before / after pics…

As an experiment; I decided to print mine to color laser transparency material I bought by the sheet from Fedex Kinkos. I laser printed it; then coated the back with some summer white plastic enamel I purchased at Lowes. Here’s the result after the white dried:

Here’s the RFM before:


STNG after:

Data East Star Trek: 25th after:

TeamPlay Star Trek: Voyager before:


I’m working on something special for my Sega Star Trek Captain’s Chair… so I’ll post pictures of the inserts when I have an update for my worklog.