F-150 Trailer Hitch and Custom Case

Back in October 2018; I purchased a new 2018 F-150 Raptor from new dealer stock to replace my 2000 Dodge Dakota which I purchased new from a dealer in Oregon. Given the way Chrysler failed to support their products under warranty; I informed them that I would never own another Chrysler product again. If you want more details as to why I won’t support that company any more; I posted briefly about it here.

I bought the Raptor to replace my daily driver and to haul the occasional Pinball machine to/from events. One of it’s jobs is to haul my enclosed trailer when I’m taking more than one machine. The result is I needed a new drop hitch. I originally started with a 8inch drop; but that was really too low for other trailers – while it fit my trailer fine. I ran into this when a friend rented a Uhaul trailer and it was nearly dragging the ground. As a result I decided I needed an adjustable trailer hitch which then became obvious that I needed a way to store this trailer hitch when it isn’t in use. On my other truck; I basically left the hitch always on the truck and managed to hit it with my shins or sometimes the driveway on the way out of the house. I wanted to avoid that this time around. Originally; I thought I might fit the hitch in the center console; but it turned out to be too heavy and bulky. So I’ll also be talking about my storage solutions in this post.

Final Amazon Shopping List:

My saga began when I came across a Uriah Products UT623410 Adjustable Aluminum Mount with 3 Interchangeable Balls-6″ Drop on a Amazon Warehouse deal for a good price. In the past I had really good experience with AMW deals; where the packaging or minor issues which didn’t effect functionality were worth the discounted amount. The biggest problem with this mount was it was what I’d call heavily used. It appears the previous purchaser used it for a cross country trip; then boxed it back up and shipped it back to Amazon. Because of this I decided I wanted to clean it up and make it match the “Electric Blue” of my Raptor. I started with the drop mechanism. The two main pieces are made from a thick Aluminum alloy; so they tend to scratch and dent under heavy use. Specifically; the drop mech tends to “crease” on the lower part of the receiver when it’s rocking back and forth while hauling the trailer. I cleaned up the previous user’s creases with a file and some sandpaper:

I proceeded to clean the part and then powder coat it with the blue powdercoat I had from a previous project.

I did the same thing with the slidable ball mount; here’s the part getting the powdercoat:

I used some carriage bolts sourced from Lowes to secure this heavy part on my makeshift powder coating rack.

Next, I used a scrap sheet of aluminum to make a makeshift “cooking” stand for use in the toasting oven. Here’s the part before heating:

Here’s the part after curing the powder coat:

I did some more offline work to add a powder coated “raptor” to the ball mount on both sides. Sadly I didn’t take any pictures of this process. The process was that I basically put some Polyamide tape over the mount and then laser etched the raptor image into the powdercoat and tape. Once I had clean metal from the laser etch; I powdercoat a matte black onto the polyamide tape and re-baked the piece. Here’s the installed ball mount with the Raptor embellishment:

With the ball mount complete; I turned my focus on how to store the hitch when it’s not in use. This turned out to be tricky because I had already used up all the under rear seat storage with other items; so I needed a organized way to keep it out of the way while being able to quickly install it when needed. After some research; I decided I needed to use a Pelican Vault V200 Medium Case to store the hitch and all it’s accessories in “layers” inside the Pelican. I wasn’t keen on hand carving foam… and the foam that came with the Pelican wasn’t strong enough to resist the weight of the hitch. A plan solidified which involved laser cutting some high density PE foam on my cutter. Why PE? Because it’s laser safe ad can be bought readily on Amazon. Before I got to that point; I proceeded to work out the geometry in CAD before committing to lasering the foam and to make sure everything would fit.

I started by using a set of digital calipers to measure the various parts I wanted to put in the case and transferring the basic outline into a DXF file. Most of the parts are under 2inches tall. with the notable exception of the ball mount. This is why I decided on the 2inch thick foam and then stack two layers of the foam to hold the various other miscellaneous pieces. For the Ball mount; I’d have to mount it vertically to keep the horizontal space for the “L” shape of the drop. A couple of design itterations later; here’s the final bottom layer as seen in CAD:

The bottom bascially holds the three balls, the ball mount, the drop, one of the locks, and one of the ball pegs. The Top Layer housed the remaining parts:

This layer houses the remaining parts:

  • remaining Z-height of the Ball mount,
  • The remaining Z-height of the 2-3/4 ball,
  • The remaining ball peg,
  • a second hitch lock,
  • The unused receiver hitch peg,
  • a tonge lock,
  • a spot for the Plano Case – which holds the misc clips,
  • and a spot for the Keysmart keyring (for the various keys)

I wanted the bottom of the locks and pegs to be flush with the top of the given layer so I made some “filler” parts out of 1inch. I wanted the ball mount to be “snug” between the first and second layers; so I also made a filler out of 1/2inch foam to mount on top of the second layer.

With the CAD work done; I started trying to laser cut this PE foam. Turned out to be quite tricky for several reasons. First; there’s no published power/speed values for the foam. Second; my poor Epilog 24TT laser just lacks the power to punch thru the foam. My laser specs for a new tube is 25watts – but I’m sure mine has aged and probably puts out 20ish watts if that. Third; the 2inch foam is really too thick for the 2in lense my machine has. Focusing on top of the 2in foam; the laser’s focal distance causes almost unmanageable beam spread at about 1/2inch from the bottom of the 2in foam. This causes extreme melting at the “bottom” of the layer. Again because the focal length of a 2in lens; it was impossible to re-focus the laser to cut the final inch in z-depth on the foam. Regardless; I was able to cut the pieces – which really turned out better than if I’d tried to hand cut them. I don’t remember specifically what I used for power; but it was multiple (read 4-6) passes with varying power. I started with 30% power at 30% speed for the initial cut. This was dialed in by doing some test cuts to maximize cutting and minimizing shrinkage due to excessive heat at the cut line. With each pass; I reduced the speed by 10, 5, and 5 while adding 20% more power. Again; this was to “punch” thru the remaining material without being able to refocus the 2in focal length. Here’s the final “table” of the power settings used for each pass:

Epilog 24TT 2in PE foam settings

The 1 inch and 0.5 inch foam cut much easier; I think the 1inch foam cut in 2 passes and the 0.5inch with one pass at 30/30. With the foam cut; it had to put the parts together. The only way to really get this foam to glue to itself is using CyanoAcrylate glue. I forget where I read this; but Google search basically indicated this is how the “industry” makes custom shipping foam out of this stuff. I did this by putting the CyanoAcrylate Accelerator in the Needle tip Glue Bottle. Then I put the Accelerator on one side of a seem and the CA glue on the other. Then using my fingers; pressing the seem together for about 15-20seconds. Take my advice here… unless you want to be dealing with superglued spots on your finger tips; use some disposable latex gloves. The CA glue still gets everywhere… so make sure you’re wearing “junk” clothes. Even after 20seconds; the glue really hasn’t set well. So once you completely finish a “layer”; leave it to set overnight so the CA glue will completely “cure”. The Accelerator is suppose to make this bonding instant… but either I was using too much of it… or the glue had a longer shelf life. So since I was going to be using this foam for really heavy things; I just left it to cure overnight.

What did all of this work yield? Here’s the bottom layer populated with it’s various pieces:

Here’s the top layer with it’s pieces. This was a earlier non-reworked version which didn’t have the tounge lock or keysmart keyring areas in the empty spaces.

The Plano Pocket Box holds the various clips, o-rings, and extra keys for the locks:

IIRC, I reused the compressible foam sent with the vault case for the top of the lid so that the layers would remain snughly compressed in the Vault case:

I used the Premium Cinch Strap to secure the case in the bed of my truck by securing it to the Camper shell’s linear actuator:

With that project is complete. I’ve used the case about 3-4 times and it makes the whole storing of the drop hitch easy.

Stern Star Trek: Custom Shooter Knob & Housing

A customer of mine graciously agreed to sell me his Shooter housing decal from aurich‘s Alternate decal set; as a result, I was able to finally finish my custom shooter housing and knob.

custom Star Trek Knob
custom 50th Anniversary Shooter Knob – Stern Star Trek

I had a shooter housing custom powder coated LE blue and installed the Decal. The knob is 3D printed at Shapeways from my custom design:

in polished Nickel and I powder coated it LE blue to match the housing.

A Star Trek 50th Anniversary Pin was then JB welded to the knob and it was encased in EasyCast Clear Casting Epoxy to give it a smooth surface for the palm of your hand.

Overall; I’m very happy with how it turned out.

Paint matching powdercoat to other colors

During my Star Trek Captain’s Chair Restoration; I found myself wanting to paint match some powdercoat to the existing color of the plastic side panels on the chair.

Please note: Readers are responsible for their own sacrifices to the blood god. Safety first– if you injure yourself implementation of this guide; expect we’ll take no responsibilities. Commentors at Hack-A-Day have indicated that MEK is flammable (as does the label) – so please take the appropriate precautions.

Required materials:

  • Glass or metal mixing vessels  (an airbursh jar works well)
  • Methyl Ethyl Ketone (MEK)
  • A set of Powder Coat colors to mix the colors
  • A paint sprayer… HLVP, Gravity fed, or Airbrush
  • A Panatone(r) Color Cue(TM) or similar device (optional).

Powdercoat using this method appears to be every bit as robust and scratch resistant as normal powdercoat. The author has seen no negative material properties from using MEK instead of a powder coating gun (electrostatic).

For the beginner; Harbor Freight may be a good stop for the primary colors – they usually carry White, Red, Black, and Yellow. Unsure about Green and blue. I also use HF touch up paint guns, HLVP, and airburshes to apply my MEK solutions.  Caswell plating is also a good source for many a color. MEK can be purchase in the paint area of most home improvement stores – I buy mine at Lowes.

I wanted to paint match the powder coat because my chair controls have began to peel and rust. They’ll need to be redone so I wanted them to match the newly retr0brighted side panels.

While the used of the color cue is a good starting place – it isn’t required; you can manually mix colors by eye until you get it right… as you’ll see; I used the color cue to get initial color suggestions (or base colors if you will); then added pure white to bring the color closer to that of the plastics.

I started by measuring the sRGB color of a retr0bright-ed side panel using my Pantone(r) Color Cue(tm) device which I got off of Ebay several months ago and it came up with r246 g230 b198. I pulled these values into the RGB to commercial Tints page at EasyRGB.com. This gave the closest RAL numbers which to match to. I then went to google and did a search for RAL-1013 powder coat which returned a result to powder365.com for their ” Oyster White ” powder coat. Then using the HTML code #F6E6C6
I also used the RGB browser to convert to “RAL Classic” listed six colors with % equivalent matches to my original scanned color.

% 1-?C Color name
96% RAL 1015 Light ivory
94% RAL 1013 Oyster white
93% RAL 9001 Cream
92% RAL 1014 Ivory
90% RAL 9010 Pure white
89% RAL 9002 Grey white

I also did searches for other color combinations and ended up selected the following three colors from powder365.
1lb x RAL 1013 OYSTER WHITE (340/10MIN)
1lb x RAL 7035 LIGHT GREY (340F/10MIN)

The idea was to put each color on a test piece to see how close to match and pick one which looked the best.

For more information on color matching using the Color Cue; please see Pinball Pal’s Color Cue page.

During my research; I also came across a post to caswellplating.com’s forums which talked about mixing the powder with MEK to “melt” the powder into liquid form for the purpose of correct a blemish on an existing powder coated part. This sparked an idea – why not use the MEK to mix powders together to get an even better color match. I have a quart of MEK in the garage – so it was time to experiment.

I knew the grey wouldn’t really match – it was too grey; so I used MEK to melt it and used a hobby paint brush to apply it to the scrap piece. I then used regular power coating equipment to lay down the almond and oyster for comparison. For the last color; I decided to mix some grey, 2 TSP of pure white (purchased at Harbor Freight), 2.5 TSP of oyster together with a generous helping of MEK to turn the powder to a grey-white “milky” formulation. I applied this with a paint gun:
MEK Test Piece
From Left to Right: RAL-7035+MEK (under thumb), Almond, RAL 1013, and MEKMix

The Right most Grey is “uncured” IE that is how it goes on being applied with a paint gun. Looks fully cured already. and the lines were created with standard blue painters tape. Be-aware – that MEK powder liquid acts just like any paint… it will dry on everything. so protect from over-spray and wear gloves. Unlike the powder form of powdercoat; it can’t just be wiped off of surfaces.

The cool thing about MEK powder-liquid is reportedly it can be used on Plastics and Wood… using low cure temperatures. Ideal for paint matching on cases or other non-metal projects.

With MEK; it looks like one could color match any color given enough patience and primary colors to choose from. Now with this knowledge; it was time to do some actual paint mixing for the purpose of matching the side panels.

I went to work on the control panels:

As you can see the control panels are in need of some TLC. As typical for this machine; the Fire control panel label has begun to deteriorate and is peeling away from the metal. So I removed the label manually – then used Xytol to soak the piece for about 5minutes to soften the label adhesive so it could be removed with a plastic paint scraper. I continued cleaning/soaking the bracket until all the label residue was removed:

Then I sandblasted the bracket w/ ALO2 to remove the rust and other residue. And then finally; I wiped the bracket clean with some clean MEK to remove and remaining dust and oil from the surface.

I then proceeded to powdercoat the underside to the bracket with the Oyster White Powder coat.
For the front; I did an MEK liquid mix as discussed previously. This time I started with a base of 2.5 TSP of Oyster White powder coat and added 1.5TSP of pure white Powder coat. I then mixed with approx 1/4cup of MEK to form a 2% milk-like consistency. I color checked the mixture by using a small paint brush to apply the color to the underside of on of my plastic pieces. This mixture was nearly a spot on match to the plastic so I decided to go with it. I loaded the MEK liquid powder coat to my touch up paint gun

And painted the front / sides with this MEK paint match. Here it is “air cured”:

Once it is dry to the touch / safe to handle (usually about 20minutes); I place the bracket in my powder coat toaster oven for initial curing. during my test runs; I noticed that if you attempt a full cure (400F / 20minutes) with the MEK solution still wet – it will “Boil” the paint leaving rough spots. So I put the piece in the oven at 150F / Warming setting for 10minutes to allow the MEK to evaporate. Then I crank the piece up to 400F for 20minutes for the final cure.

Once the piece cooled to room tempeature; I did a test match against a retr0brighted piece. First; here’s the stock Oyster White (back of bracket):

Notice the slight yellow hue vs the plastic piece.

Here’s the MEK paint match 1.66:1 (oyster to pure white):

I call that a match!

Incidentally; The Color Cue captured an sRGB255 value of 237, 225, 192 for the color matched piece (color code EDE1C0).

Please check out the remainder of the worklog – where I used an airbrush and a laser cutter to create powdercoated labels on the pieces:
1982 Sega Star Trek Captains’ Chair Restoration