In celebration of Chad’s work; I created a set of EPROM labels to cover the rom files. I’ve decided to release the labels for free personal use. Enjoy!
Back in October 2018; I purchased a new 2018 F-150 Raptor from new dealer stock to replace my 2000 Dodge Dakota which I purchased new from a dealer in Oregon. Given the way Chrysler failed to support their products under warranty; I informed them that I would never own another Chrysler product again. If you want more details as to why I won’t support that company any more; I posted briefly about it here.
I bought the Raptor to replace my daily driver and to haul the occasional Pinball machine to/from events. One of it’s jobs is to haul my enclosed trailer when I’m taking more than one machine. The result is I needed a new drop hitch. I originally started with a 8inch drop; but that was really too low for other trailers – while it fit my trailer fine. I ran into this when a friend rented a Uhaul trailer and it was nearly dragging the ground. As a result I decided I needed an adjustable trailer hitch which then became obvious that I needed a way to store this trailer hitch when it isn’t in use. On my other truck; I basically left the hitch always on the truck and managed to hit it with my shins or sometimes the driveway on the way out of the house. I wanted to avoid that this time around. Originally; I thought I might fit the hitch in the center console; but it turned out to be too heavy and bulky. So I’ll also be talking about my storage solutions in this post.
My saga began when I came across a Uriah Products UT623410 Adjustable Aluminum Mount with 3 Interchangeable Balls-6″ Drop on a Amazon Warehouse deal for a good price. In the past I had really good experience with AMW deals; where the packaging or minor issues which didn’t effect functionality were worth the discounted amount. The biggest problem with this mount was it was what I’d call heavily used. It appears the previous purchaser used it for a cross country trip; then boxed it back up and shipped it back to Amazon. Because of this I decided I wanted to clean it up and make it match the “Electric Blue” of my Raptor. I started with the drop mechanism. The two main pieces are made from a thick Aluminum alloy; so they tend to scratch and dent under heavy use. Specifically; the drop mech tends to “crease” on the lower part of the receiver when it’s rocking back and forth while hauling the trailer. I cleaned up the previous user’s creases with a file and some sandpaper: I proceeded to clean the part and then powder coat it with the blue powdercoat I had from a previous project.
I did the same thing with the slidable ball mount; here’s the part getting the powdercoat: I used some carriage bolts sourced from Lowes to secure this heavy part on my makeshift powder coating rack.
Next, I used a scrap sheet of aluminum to make a makeshift “cooking” stand for use in the toasting oven. Here’s the part before heating: Here’s the part after curing the powder coat:
I did some more offline work to add a powder coated “raptor” to the ball mount on both sides. Sadly I didn’t take any pictures of this process. The process was that I basically put some Polyamide tape over the mount and then laser etched the raptor image into the powdercoat and tape. Once I had clean metal from the laser etch; I powdercoat a matte black onto the polyamide tape and re-baked the piece. Here’s the installed ball mount with the Raptor embellishment:
With the ball mount complete; I turned my focus on how to store the hitch when it’s not in use. This turned out to be tricky because I had already used up all the under rear seat storage with other items; so I needed a organized way to keep it out of the way while being able to quickly install it when needed. After some research; I decided I needed to use a Pelican Vault V200 Medium Case to store the hitch and all it’s accessories in “layers” inside the Pelican. I wasn’t keen on hand carving foam… and the foam that came with the Pelican wasn’t strong enough to resist the weight of the hitch. A plan solidified which involved laser cutting some high density PE foam on my cutter. Why PE? Because it’s laser safe ad can be bought readily on Amazon. Before I got to that point; I proceeded to work out the geometry in CAD before committing to lasering the foam and to make sure everything would fit.
I started by using a set of digital calipers to measure the various parts I wanted to put in the case and transferring the basic outline into a DXF file. Most of the parts are under 2inches tall. with the notable exception of the ball mount. This is why I decided on the 2inch thick foam and then stack two layers of the foam to hold the various other miscellaneous pieces. For the Ball mount; I’d have to mount it vertically to keep the horizontal space for the “L” shape of the drop. A couple of design itterations later; here’s the final bottom layer as seen in CAD: The bottom bascially holds the three balls, the ball mount, the drop, one of the locks, and one of the ball pegs. The Top Layer housed the remaining parts: This layer houses the remaining parts:
remaining Z-height of the Ball mount,
The remaining Z-height of the 2-3/4 ball,
The remaining ball peg,
a second hitch lock,
The unused receiver hitch peg,
a tonge lock,
a spot for the Plano Case – which holds the misc clips,
and a spot for the Keysmart keyring (for the various keys)
I wanted the bottom of the locks and pegs to be flush with the top of the given layer so I made some “filler” parts out of 1inch. I wanted the ball mount to be “snug” between the first and second layers; so I also made a filler out of 1/2inch foam to mount on top of the second layer.
With the CAD work done; I started trying to laser cut this PE foam. Turned out to be quite tricky for several reasons. First; there’s no published power/speed values for the foam. Second; my poor Epilog 24TT laser just lacks the power to punch thru the foam. My laser specs for a new tube is 25watts – but I’m sure mine has aged and probably puts out 20ish watts if that. Third; the 2inch foam is really too thick for the 2in lense my machine has. Focusing on top of the 2in foam; the laser’s focal distance causes almost unmanageable beam spread at about 1/2inch from the bottom of the 2in foam. This causes extreme melting at the “bottom” of the layer. Again because the focal length of a 2in lens; it was impossible to re-focus the laser to cut the final inch in z-depth on the foam. Regardless; I was able to cut the pieces – which really turned out better than if I’d tried to hand cut them. I don’t remember specifically what I used for power; but it was multiple (read 4-6) passes with varying power. I started with 30% power at 30% speed for the initial cut. This was dialed in by doing some test cuts to maximize cutting and minimizing shrinkage due to excessive heat at the cut line. With each pass; I reduced the speed by 10, 5, and 5 while adding 20% more power. Again; this was to “punch” thru the remaining material without being able to refocus the 2in focal length. Here’s the final “table” of the power settings used for each pass:
The 1 inch and 0.5 inch foam cut much easier; I think the 1inch foam cut in 2 passes and the 0.5inch with one pass at 30/30. With the foam cut; it had to put the parts together. The only way to really get this foam to glue to itself is using CyanoAcrylate glue. I forget where I read this; but Google search basically indicated this is how the “industry” makes custom shipping foam out of this stuff. I did this by putting the CyanoAcrylate Accelerator in the Needle tip Glue Bottle. Then I put the Accelerator on one side of a seem and the CA glue on the other. Then using my fingers; pressing the seem together for about 15-20seconds. Take my advice here… unless you want to be dealing with superglued spots on your finger tips; use some disposable latex gloves. The CA glue still gets everywhere… so make sure you’re wearing “junk” clothes. Even after 20seconds; the glue really hasn’t set well. So once you completely finish a “layer”; leave it to set overnight so the CA glue will completely “cure”. The Accelerator is suppose to make this bonding instant… but either I was using too much of it… or the glue had a longer shelf life. So since I was going to be using this foam for really heavy things; I just left it to cure overnight.
What did all of this work yield? Here’s the bottom layer populated with it’s various pieces:
Here’s the top layer with it’s pieces. This was a earlier non-reworked version which didn’t have the tounge lock or keysmart keyring areas in the empty spaces.
The Plano Pocket Box holds the various clips, o-rings, and extra keys for the locks:
IIRC, I reused the compressible foam sent with the vault case for the top of the lid so that the layers would remain snughly compressed in the Vault case:
I used the Premium Cinch Strap to secure the case in the bed of my truck by securing it to the Camper shell’s linear actuator:
With that project is complete. I’ve used the case about 3-4 times and it makes the whole storing of the drop hitch easy.
Honestly; I’ve been neglecting my Stern Star Trek Pinball machine. I got it new-in-box and didn’t do anything to protect the outlane hole which feeds the ball trough. My machine has seen some play at various conventions like Texas Pinball Festival since I purchased it back in 2016. The issue is that the steel balls tend to wreck havoc with the clearcoat and wood under the clear coat. I helped mitigate this problem shortly after unboxing by installing a set of Cliffy protectors. At the time; Cliffy did not offer an outhole protector so my ball return hole did get any love. A couple of weeks ago; I looked and noticed some wear on my outhole. 🙁
You can see definite wear on the front and left side edges. It’s not massive; but enough to warrant some protection. I debated getting a new Cliffy outlane protector; but it only protects the front side from wear. As a result; I decided to try my hand at designing my own protector which would be cut out of 2mil adhesive Mylar (polyethylene) using my new Vinyl cutter.
I began by tracing the area with tracing paper so I could get the basic layout easily into the computer. I didn’t have a lot of room to work with so I decided to bring the mylar up to the black keyline just above the out hole. This would give me a little extra grip and make it easy to hide within the art work. I also decided I would wrap the mylar around the outlane hole pinching it between the ball trough and the underside of the Playfield. Finally; I would protect all three sides of the outhole to the metal ball guide seen the foreground. Finally; I decided to protect the outside corners of the PF in a similar way to protect the edges leaving cutouts for the legs of the metal ball guides so they wouldn’t “wrinkle” when the guides were re-installed. This was my initial design – and remains the my property (read: copy protected):
My design choices were to add the round corners created by the endmill when the Playfield was created and then add rounded Vs on the lines were the mylar would roll onto another perpendicular surface. This should aid in preventing wrinkles from forming at those junction points.
With the design created; there wasn’t anything else to do but cut it on the vinyl cutter and install it. It’s going to be very hard to photograph this crystal clear mylar but hopefully you can see it if you click on the pictures to get a higher rez image. Here’s the top surface with the mylar installed:
You can barely make out the outline of the mylar along the black keyline as designed. Additionally you can see the mylar where it wraps around the outhole sides and the two sides of the PF. Hear’s a close-up of the mylar wrapping around the PF:
Finally; the underside of the pf; where the mylar wraps around to be pinched by the ball trough:
I reinstalled the ball trough, all the ball guides, and put it back together. No issues what-so-ever with the installation and the mylar has no noticeable impact to the ball. Additionally; this should help minimize any additional damage to the clearcoat near the outhole.
When I first got my Revenge From Mars from a local Pinhead; the fan was clogged with dust and grime. At the time; I simply cleaned the fan, removed the sticker, and added some oil to the bearings. This lasted about 3months before the fan began to make some horrible noises because the bearings were shot. I “lived with it”; but it remained on my todo list.
For years; I had watched threads about Pin2k in Pinside… always feeling a little guilty I had not eliminated the risk that my CPU fan would die… overheat the cpu… and put my RFM in jeopardy of force converting to NuCore or Pinbox. Today was the day I vowed to resolve that noisy fan.
First; I did not want to buy NOS (new old stock) of some 50mm fan made back in 2000 or some china knockoff that wouldn’t last another 18 years. I wanted a high quality fan with very little noise; but a good performer. I’ve grown to like the Noctura brand of fans because they aren’t cookie cut china knock offs. Noctura does not sell a drop-in-replacement for 50mm fans. Going smaller usually means less air flow with a higher “whine” because the fan blades have to go much faster to move more air. So I decided that I was going to try and use the NF-A6x25 FLX 60mm fan:
and build an adapter to fit the larger fan over the existing heatsink. This blog entry documents my solution, provides a TAPR/NCLed DXF for my adapter, and links to a Shapeways implementation of my adapter my fellow pinball enthusiasts to use.
First, I removed the CPU box from my RFM and pulled out the existing CPU heatsink:
Once I had the CPU heatsink free; I unscrewed the old FAN from the heatsink. This was done for two reasons;
I need the heatsink to take caliper measurements in order design a 60mm to 50mm bracket.
Eventually; I’d toss the worthless 50mm fan – but wanted to keep it incase I couldn’t find a working solution.
Obviously; the 60mm fan wouldn’t fit within the 50mm cavity of the heatsink; so I knew I wanted to use some 1/4inch clear Acrylic as an “adapter”. I went into qCAD resulting in a DXF file which I could then send to my laser cutter. I wanted to reuse the 50mm fan/heatsink screws and the 4 qty Vibration-Compensators provided in the Noctura kit. My second proto resulted in success and looked like this:
Reusing the 4 qty 50mm countersunk heatsink screws; I attached the clear acrylic bracket to the top of the heatsink. Then I put the 4 qty Vibration-Compensators provided in the Noctura kit thru the acrylic bracket and into the NF-A6x25 fan. The whole assembly fit together quiet nicely.
I carefully; reinstalled the fan-sink combo back onto the cpu and socket. This was a little tricky because the 60mm fan is bigger; but as you can see the whole contraption fits well:
Conveniently; my Pinball 2000 motherboard had a FAN header right next to the cpu socket; so I simply attached the CPU fan’s 3pin PWM connector to that unused mobo connection:
I powered up the Pin2k system on my bench with both the original and the new fan connected. !That old fan really needed to be replaced! This new fan is ultra quiet; I don’t think you can hear the fan over the PSU fan even when the box is open. You won’t be able to hear the fan at all when its in the backbox behind the backglass. Success!
For years I’ve been limping along with a very noise older model Air compressor for my Modding needs. Recently; I upgraded from a Universal Laser 25E laser to an Epilog Legend 24TT laser cutter. The former could be outfitted with Air Assist; while the latter came pre-plumbed for Air assist. The issue is that the Air Assist works best if the lens doesn’t get splash back form the Air assist when it contains water.
Air compressors work by compressing the gas of surrounding air which contains water vapor. This water vapor leaves the compressor very hot along with the compressed air stream. As it sits under pressure; the water vapor condenses as it cools leaving water in the air lines. A properly configured Air Assist needs to remove that water vapor so it cannot exit the assist nozzle and insta-cool a warm laser lens. This leads to cracked or otherwise damaged lenses which can be expensive or lead to downtime as a new lens is sought.
This air compressor was purchased straight from California Air Tools with less than 50hrs at a fair discount and automatically cools the air stream as it exits the Tank by running thru a radiator on top of the tank. This radiator is cooled by some fans to keep the radiator near room temperature causing the water vapor to condense out of the compressed air. The air then passed thru an air/water seperator. This separator causes a significant amount of water to be deposited in it’s reservoir where a tube just drips the water onto the ground (problem #2).
The Air stream is then plumbed to a Activated Alumina desiccant Air Dryer where additional drying is done by chemical reaction. The bottom of this air dryer is also plumbed with a tube which just drips onto the ground (problem #3). The main problem (problem #1); however, that the tank itself needs to be drained periodically as is required for ALL Compressors to prevent the air tank from rusting inside. If I had been purchasing new; I may have just purchased a 10010DACD which as a Automatic Drain Valve installed at the factory… but since this was a discounted unit; I couldn’t get drain valve option. Additionally; the factory charges an additional $150 to cover the installation and plumbing for the Auto-valve; I do not know if CAT will rectify the tubing outputs of the separator and dryer, so this may be an interest read for owners of the more expensive unit.
The result is I need to plumb my own automatic drain valve while making an attempt to tidy up the separator and air drier water outlets so they all exit the machine into a reservoir which can be dumped periodically instead of spraying the water all over my garage floor. This Blog entry is the documentation of what I did in the hopes it can help some other budding laser hobbyists in creating their own Air Assist setup.
I started by researching the concepts behind CAT’s Automatic Drain valve which is pictured here:
As best as I can figure is this is no different from any of the other auto-drain valves available for less than $30 on Amazon. It’s probably even made in China.
I started by researching auto-drain values on youtube where I came across Farmboy’s Garage’s implementation. While complete; it’s kind of scary how he just lets the valve blow water in the the corner of his garage. As he states in a later video; it scares him every time it triggers. My goal is to try to keep all of the water draining into a lidded bucket so the water can be contained and easily dumped as my garage doesn’t have any drains and the compressor is near the interior wall rather than the external garage door.
To plumb the cheaper auto-drain valve; I’m going to need to purchase some piping accessories and some vinyl tubing. I came up with this crude napkin sketch before I went to Lowes to “engineer” a solution in their plumbing section. Here’s a shopping list from Amazon if you’d rather purchase as much as you can using your Prime Membership. While this blog entry will focus on adding a auto-drain valve to my compressor; it will probably be very similar to your air compressor. Feel free to reuse as much of this design as you’d like. IF you decide to purchase from your local Lowes; I’ve included pictures of the bags for each step and included the bag part numbers in the shopping list below between ()s.
The total cost of this shopping list isn’t exactly known as the Author has some parts on hand. The plumbing and Auto-Drain valve combined costs about $80 in total. YMMV as costs on these items can vary. Time wise; again it’s tough to say because I had it spread over several days as I waited for parts to arrive from Amazon prime. I estimate you could finish the whole project in an afternoon if you have everything ready to go.
Please note: This retrofit process will likely void the warranty of your CAT air compressor especially if you perform the electrical modifications. The Author of this blog entry is not responsible for any damage you do to yourself or your property.
Duplication of or Plagiarizing from this blog entry is not permitted without written consent from the author and Pinball-Mods.com.
RetroFit the plumbing:
Begin by determining which direction you want the drain valve to go. I’d advise you put the air compressor in its final position and determine which direction the valve assembly should go and drain. The author choose to install his valve assembly going to the right as your looking at the machine. To ease working on the compressor; put the compressor on a work surface on it’s side so you can get easy access to the drain. The Author worked up in the Z direction as he assembled the plumbing.
Remove the stock ball valve on the underside of your air compressor’s storage tank. On my CAT; the factory installed with some clear plumber’s goop to help prevent air leaks. The result is you may have to use a little bit of force to break the clear sealant inside the threads.
Next; install the 1/4in MIP x 1/4in FIP Brass 90 Street Elbow in the drain hole as pictured:
Be sure to wrap the male end of the elbow in teflon pipe tape
Wrap both ends of the 1/4in MIP x 2-1/2in Long Brass Pipe with pipe tape and install it into female end of the elbow. Use your robogrip or Pipe wrench to make the connection tight.
Wrap the male end of the 3/8in MIP x 1/4in FIP Brass Pipe Bushing with pipe tape and install it on the remaining end of the brass pipe. Snug it up with an appropriate sized wrench.
Install the 1/2in FIP x 3/8in FIP Brass Reducing Coupling onto the 1/8″ MIP fitting and tighten.
Carefully disassemble the drain valve using the top silver nut and the star washer. This should allow the black plastic body to be removed from the brass assembly. Then you have access to the brass nut holding the actuator assembly to the brass body. Remove it. Note how the device comes apart because you will need to reassemble the valve properly once its completed installed on the machine. Take care as there is a spring and small brass piece inside the brass could get lost. With the black electrical case and valve assembly removed; you’ll be able to install the brass fittings in the following steps.
Now thread the drain valve assembly onto the 1/2 FIP coupler from above after pipe tape-ing the male end. Make sure the final tight position of the valve is parallel with the bottom of your tank. The black switch body and actuator should have enough clearance to set just under the tank. Open the assemblies ball valve now.
Tape the male end of a 1/2in MIP x 1/4in FIP Brass Pipe Bushing and tighten on the Valve assembly.
Tape both ends of the 1/4in MIP x 1-1/2in Long Brass Pipe and install onto the 1/4″ FIP bushing.
Install the 1/4in FIP All Ends Brass Tee as shown. Ensure the final tight position has the top opening in the direction of the top of the compressor. This will be the inlet of the Problem 2 and 3 filters drains.
Tape the male thread of the 1/8in ID Hose Barb x 1/4in MIP and install it on the top facing opening.
Tape the male thread on the first 1/4in ID Hose Barb x 1/4in MIP and install it on the remaining opening of the tee. This will be the outlet for all water and will eventually go to the bucket.
Thread one end of the 0.71ID vinyl tube onto the 1/8in hose barb. Cut the tube off about half way up the side of the tank.
Slip the end of the 0.71 tube into the compression fitting and tighten it onto the bottom end of the Tee. For instructions on installing compression fittings; see this youtube video; however, note that the tee’s compression sleeve is build into the brass nut. Loosen the compression fitting from the Tee and verify the compression fitting is solid. Tape the male end of the fitting and reinstall.
The fitting opposite the drain should be plumbed to the bottom of the Air/Water separator using additional 0.71tube. This separator will have the most volume of water; so it should have the easier path. Remove the existing black tubing on the bottom of the water seperator.
The perpendicular fitting should be plumbed to the bottom of the Chemical Air dryer as large volumes of water are not expected from that part. Remove the existing black tubing on the bottom of the Air Dryer.
Secure the compression Tee fitting to the side of the tank using a self-adhesive tie down and a zip tie.
Cut the 0.71ID tube between the compression tee and the 1/8″ID hose barb at about the halfway mark. This will be the location for the 4mm ID Check Valve. The direction arrow should face the hose barb so that only the water can drain and prevents at pressure air from the tank from back-flowing into the filters.
Reassemble the solenoid valve (reverse of disassembly).
ReAttach the electronics to the valve as shown. Note that the “AC in” port of the drain valve should be in the same direction as the 1/8in ID barb (IE facing top of compressor).
The idea behind the Tee is that water drained from the filters will flow thru the check valve and pool at the outlet of the auto-drain valve. When the drain valve fires; the compressed air+water from the tank will force the pooled water after the valve up and into the bucket will provide later.
We’ll pick up the final bucket assembly after a short break of electrical wiring.
RetroFit the electrical:
Please note: The following electrical retrofit will likely void the warranty of your CAT air compressor. When in doubt consult a licensed electric professional. The Author of this blog entry is not responsible for any damage you do to yourself or your property.
The drain valve operates on 110VAC on the CAT air compressor. MAKE SURE you unplug the compressor from the wall and verify no AC power is present before proceeding. Always make sure the unit is unplugged before continuing work.
There is no clean way of getting switched AC from under the compressor’s switch cover. The Author decided to tap into the wiring harness outside the switch cover. This means that the Auto Drain valve will not always have power and the timer functionality will be effectively disabled unless you are running the compressor at a very high duty cycle. In the Authors case; he expects the auto drain valve to fire each time the compressor comes on; which should be good enough.
You could choose to wire this directly onto an AC plug so the auto drain valve fires as it is intended. This would mean you would have to unplug it each time you power off the air compressor. The Author chose to keep the wiring “inside” the compress as a single unit with one plug to supply power.
The author went overboard on this wiring job; channeling his sleeving powers to make the installation look nice, neat, and professional. He installed some “molex” style connectors as a “y” in the harness to allow the auto-drain valve to be disconnected in the future (or re-wired). This is by no means required; as you could use the same technique CAT used with crimp style connectors. The Author’s method is just one way of solving the problem.
Begin by locating the AC wiring harnesses. The Author checked under the power switch body and identified the black harness. Showing that inside the black harness there was a blue and brown wire which goes to a couple of the AC powered components on the top of the compressor. These were sealed in black heat shrink. Cut the heat shrink away to reveal CAT’s crimped pin connectors.
Cut away the existing crimped-on connectors and use a 0.093 2pin connectors with a Y connection (white/brown) in the picture. Basically we’re adding another connection the compressor side of the harness. Crimp the 0.093 male connector for the compressor side and the female connector on the accessory side. The Author used female sockets on the male connector and male pins on the female connector. The idea here is that the pins when disconnected from the main harness cannot easily be touched – lessening the shock possibility.
Crimp on the 0.062″ connector for the new auto-drain valve. Again male connector, female sockets compressor side. Female connector, male pins on the drain valve side.
Route the drain valve ac connection over the top of the compressor, down near the Tee. Disconnect the AC inlet on the drain valve and wire the socket. The author connected the white hot wire to pin 1, the brown neutral to pin2, and the green ground to pin3.
But… wait Seymour. A 3rd Ground connection? I’m lost… Clearly the AC wiring harnesses of the compressor only have a hot and neutral connection. There’s no third wire. The Author got the ground connection from a screw at the top of the compressor. If you look under the power switch; you’ll see that the ground basically ties into the metal tank. My multimeter check show that any threaded connection will serve as a good ground. More data to follow.
With the drain wired; put a 1/2in strain relief in the hole and route the ac cable up to the same mount used for the Tee and secure it there.
Route the drain power behind the handle and secure it with another mount and zip tie.
Finally, secure the new connectors onto the other side of the compressor tank. The Author didn’t have large enough heatshrink for the 0.093″ connector; but, he secured it the 0.062″ connector with heatshrink and a zip-tie mount.
With the electrical complete; you can test the functionality of the auto drain valve. When you first turn on the compressor; the auto valve will fire releasing air out the 1/4in barb fitting. Note your tank will probably be empty when you first fire it up. For that you can watch that the LED comes on Green then goes to red when the valve is closed. You can also let the compressor run for a minute or so and then turn off the compressor with some air in the tank. Then turn it back on and you should hear the drain valve open.
Because the author has his valve fire each time the compressor turns on; he set the time open to the shortest value. This should keep the tank empty of water each time the compressor turns on.
RetroFit Plumbing (continued):
With the electrical complete and tested; it’s time to plumb the exit barb into a reservoir of some type. For this it’s really up to you as to what container you want holding the water. The Author had just used up the last of his Windshield additive so this made a simple, cost effective reservoir. You can use anything you’d like; but we’d recommend something sealed (with a lid) to limit accidental spilling and blow back from the compressed air+water.
On this reservoir; we cut 3 ‘v’shaped holes in the top of the jug above our intended inlet. This is to allow the air to escape but try and contain the water. Failure to put vent holes will likely lead to catastrophic failure of your container. 😀
Identify an inlet location which will be the final 1/4in ID Hose Barb x 1/4in MIP. Wanted the water under pressure to eject downward; so drilled on the top angled surface of the jug. Using a 3/8″ drill bit; drilled the pilot hole and the used the step drill to get right sized hole so the barb could be threaded.
Connect a section of 1/4in ID vinyl tubing to the reservoir.
After about 4-6 inches of tubing; cut. Install the swagelok quick disconnect. On this part; connect the button side which auto closes to the reservoir side. This way; the reservoir remains pseudo-sealed until while you transport it to your dumping location.
Connect the other end of the coupler to 1/4in ID tubing.
Finally cut a suitable length of the tubing and connect it to the exposed 1/4in barb on the bottom of your tank.
I have yet to use this system extensively; but I’ll report back if there are any issue and their possible solutions. Hopefully, you have found this blog post useful. If so; feel free to comment below or share on social media.
A customer of mine graciously agreed to sell me his Shooter housing decal from aurich‘s Alternate decal set; as a result, I was able to finally finish my custom shooter housing and knob.
I had a shooter housing custom powder coated LE blue and installed the Decal. The knob is 3D printed at Shapeways from my custom design:
in polished Nickel and I powder coated it LE blue to match the housing.
The Data East Chase rope lights used in two Data East Pinball machines (Star Trek: 25th) and Hook) are a huge problem on the game. So much so; that my Ebay-purchased game came with no rope lights at all. 🙁 This blog series walks thru my intention of recreating the chase rope lights – but made out of LEDs so they use less current, generate less heat, and can be used for decades without any issues.
First, some credit – Patofnaud on Pinside wrote a great tutorial on repairing these chase lights. I used this pinside thread almost exclusively for this blog series and if you happen to have the original rope lights; please take a look at his tutorial.
My game has no chase lights to repair; so I’m going to have to replicate the chase lights. I decided that I didn’t want to try and re-configure a standard off the shelf rope light because they likely don’t support doing a +12VDC common with three ground leads as discussed in Patofnaud’s post #1. Additionally; I don’t have exact specs of the rope light w/ regards to light spacing, diameter of the rope, ect. Since I’m going to have to recreate the lamps; I have decided to do a conversion to LEDs… specifically, using some “fairy light LEDs” which have recently become available on the market. I started by going to Hobby Lobby and buying a set of their battery operated lights using a 40% off coupon. Amazon has a whole bunch of alternate versions of this product… so you might be better off looking at Amazon if you don’t have a Hobby Lobby near you. B072NH2FQ1 seems to be a nearly identical match to what I got from Hobby Lobby.
These strings appear to be made of discreet 603 Warm White LEDs soldered to a common anode and common cathode. The LEDs are encased in a hot-glue like product to protect the LEDs from mechanical stress and help with water proofing. The fact that all LEDs are in parallel might end up being an issue because you can’t control the current into each LED. LEDs wired this way means that any variance in forward voltage drop (Vf) between the diodes in a series may mean that LEDs with low Vf would get more current that LEDs with higher Vf and could lead to premature failure of those leds. We’ll see long term if this becomes an issue with this project.
Taking apart the battery pack of the fairy LED light uncovered what I thought… A power switch and a 1/4W series current resistor of 15ohms. 3AA batteries supply 4.5V which is current limited by that 15ohm resistor. I did some quick measurements of the entire string and IIRC; the whole string took around 113mA with the 15ohm current limiter. I don’t recall what the series Vf was for the whole string.
Because the LEDs are powered with a 4.5V source; it becomes rather obvious that I can’t use these as a drop in for the 12V incandescent rope light originally in the machine. I’m going to need a conditioning circuit which will drop the 12V down to ~4.5V and provide some current limiting. I started by measuring my machine’s ramp to determine the approximate length of the chase lights. I measured with a piece of string to be about 15inches. The fairy LED lights have spacing of about 3inches which means that my largest segment would be about 15/3 = 6 leds, max. These 6 will become important for the series resistor calculations in the future.
Before I got to far into designing a voltage level shifter and current limiter; I looked at my machine. I couldn’t find the chase light connector shown in post #6 of pat’s thread. I couldn’t find it because the previous owner connected the left and right .156 connectors together with a Z-connector. That may mean there is now an issue with the chase light board (DE #520-5054-00 or #520-5054-01) in my backbox but I’m thinking connecting them together did no future damage since they are wired together in a OR configuration in the schematic manual. Meaning OUT1A is tied to OUT2A via the Orange/Black wire in the cabinet (See post #7, picture 1). I decided that Zconnector is a good place to put my Incandescent to LED converter circuit. My plan is to replace the Zconnector with a board which does the conditioning.
I decided I was going to abuse a LM1117 style +5V regulator to voltage shift the +12V common down to +5V common then use a series resistor to current limit for the LEDs. Since +12V is the common; I’d need to do a wired-OR configuration with a set of fast Recovery SCHOTTKY diodes to the OUT connections on the chase light board. I have no idea if the LM1117 vreg can operate properly with a v+ common connection; but I suspect it will have no issue given the frequency a which the lamps operate. Additionally, given the previous incandescent lamps had issues blowing the NPN Darlington arrays on the lamp chase board; I figured putting in a PTC resettable fuse would be a nice addition. My circuit took shape in eaglecad using Digikey as a part reference.
Here’s my original Fab A circuit, keeping in mind this is untested – but I retain all rights to this circuit for the moment:
Some theory of operation:
D1&D2 provide some polarity protection – for paranoia. D3-D8 are the Schottky diodes which provide wired-OR back from the ground of the +5V regulator (U1) back to the chase light board’s OUT* connections.
C1, C2, C3 provide some filtering for the +5Vreg to help it maintain stability with the wired-OR configuration. D9 provides some additional protection for the Vreg – probably not needed; but extra insurance. R2 – R7 provide the series current-limiting resistors for the various LED strings. Why the different values of 13.3 vs 16.9? Well; my quick napkin calculations shows that there may be 5 or 6LEDs on the longest string and then one less on the shorter strings. I plan on connecting the longest string on the 1A & 1B lines while the shorter strings (with the higher resistors) will be on the others. F1-F6 are the resettable PTC fuses. The bidirectional LEDs at the bottom are monitoring the output of the chase light board to give me an indication the chase board is working properly. They will chase green if working properly. I basically created a small “Z-connector” board to condition these LEDs but also added some small connector boards to help me interface from the LED strings to a simple 4 pin 0.1″ pitch latchable connector. The idea is these smaller connector boards would be fixed to the end of the “rope lights” and allow for a quick connection.
A little background on the Series resistor calculations. Basically; Vf isn’t known for the parallel LED strings. You can’t measure Vf with the diode setting of a Digital volt meter which btw; my favorite is a Fluke 87 series meter. Vf according to my DVM is around 2.4V and we know that no current white leds operate at 2.4V for 20mA. Since I don’t know which LED the chinese put in these strips; I had to make an educated guess. To do this I went to digikey.com and drilled down on warm white 603 LEDs, downloaded the table (using the button near the bottom of the page) and then imported the data into excel so I could get an average of the Voltage – Forward (Vf) (Typ) column. I calculated Vf ~= 3.23V. Armed with Vf, and the knowledge I wanted to operate the LEDs near their 20mA operational current so they would be their brightest I was able to calculate a theoretical series resistor. Here are the “knowns”:
Vf = 3.23.
Each LED should operate at ~18mA.
With the ground diode in the Vreg path… assume Vfdiode = 0.4V. This would cause Vout of Vreg to be 5+0.4V, or 5.4V.
“ground” will be thru the UL2003A darlington on the chase driver board. VCEsat = 0.9 min.
Assume 5 leds needed for longest string and solve using Ohms Law. R=V/I.
V = 5.4 – Vfled – VCEsat
I = 18mA * numOfLEDs in string or 18mA * 5
R = (5.4 – 3.23 – 0.9) / (5 * 18mA ) = 14.11 ohms
Subtract off typical Fuse resistance of 0.9ohms and you arrive at ~13.3ohms. Repeat the calculation for a 4 led string and you arrive at ~16.9ohms.
The only “gotcha” with this theoretical calculation is that what happens to the LED if we are drawing near 18mA? There’s no real ground plane or PCB to draw heat away from the LED. The only “heat sink” is the hot glue used to encase the LED and the wire LEDs connecting the LEDs. I’m hoping the low duty cycle of the LEDs will help keep thermal runaway in check. This is something I’ll have to watch in the final assembly. If LEDs start dying… we’ll know it’s either getting too hot… or the parallel LED VF vs current is a problem.
Here’s the Fab A boards as committed to OSHPark. This is their render of the boards as I don’t have them back from fabrication yet:
I’ll post more on the circuit boards in Part 2 when I get them back from OSH Park and have them built. We’ll see if my little experiment bears fruit.
Now onto the actual chase lights themselves. I thought about using polyurethane blue tubing from Granger.com as I posted in Pat’s Pinside thread on post #19. But honestly, I don’t really feel like the blue rope light fits the ST:25th theme very well. To me; it looks like some attention getting feature to draw in the eyes of a would be quarter-dropper in an Arcade. Not that is a bad thing; I just figure since I’m not going to an have original rope light assembly with the proper Light spacing… I might as well try to make it fit the theme a little better. If not blue, then what? Well Clear is definitely an option… but it won’t really hide the led wiring very well. I had a lot of extra 1/2″OD, 1/4″ID rigid Acrylic tubing left over from the guide plastics from Star Trek: The Mirror Universe custom pinball project. I was thinking of doing that with some custom Acrylic etches on the tubing. The problem is that Techshop.ws failed due to piss-poor-Management so I can’t really go there to use their rotary attachment on the Tortec. My new-to-me Epilog Laser doesn’t have a rotary Attachment, yet. Not sure what I’m going to do about that yet… Even if I get a Rotary… what would I put on the Tubing? Then there’s the issue of bending it properly… which shouldn’t be too hard given the Youtube videos for Hard Tubing in water cooled case tutorials.
Then I stumbled across ENT Corp on Ebay who seems to have colored versions of this rigid tubing available in cut-to-order. I went ahead and ordered 6 pieces of the smoke acrylic tubing custom cut to 15.25inches. After I experiment with the etching and try my hand at the clear tube bending… I’ll proably finalize the chase lights using the smoke tubing on the final machine.
That’s it for Part 1 of this blog series… I’ll start Part 2 when I get some tubing experiments done and/or when I get the PCBs back from OSHPark. For now, Peace and Long life…
Armed with this new equipment I set about figuring out how to install them on the Udoo X86 board. The board is only setup to support 60mm M.2 drives; so I opened up SCAD and created a quick 3D printed bracket to bridge the gap between the 60mm mounting hole and 80mm M.2 drive’s mounting hole. I 3D printed this using my M3D printer, drilled out the 3D printed #4-40 holes and taped it so I could run some #4-40 polycarbonate screws I had in my modding bins. Any 4-40 screw should work. The bracket I created also has pockets for a #4-40 nut incase you want to drill out the bracket and use a nut. Printing took about 45minutes on my M3D using clear PLA.
Pinball-Mods.com is pleased to announce the immediate availability of a Laser upgrade kit for your Stern Star Trek Premium or Limited Edition pinball machine. We offer a higher power Red laser module if you wish to remain “stock” but have just a little more “punch” so it can be seen. We also have a green laser module similar to other offerings. However, what sets us apart from the competition is we are the first to offer a blue laser module for these machines. Why blue; well I think it’s a better match to the LE machines and the Playfield graphics.
Our kits come with the laser module, a custom cable harness with bolts into the stock harness – no alligator clips, no fuss, no mess. Our harness has a built-in Voltage Regulator Modules to power our custom-designed modules.
Detailed Step-By-Step Instructions are available here or on our product page.
Not sure which color you want? Check out our Youtube videos comparing the three colors against the stock red laser pointer. Please note: These videos were taken without our Stern GI Dimmer installed; so the General Illumination is at 100% as it came from Stern. These videos are 1920×1080 HD; so feel free to click thru to Youtube and/or go full screen.
I’m excited to announce the immediate availability of the C904 Housings and C905 buttons in 10 different pinball friendly translucent colors. The Colors are intended to closely match the colors of many pinball plastics such as lane guides, star posts, and switched inserts and are intended to be back-lit with LEDs. These new buttons are replacement parts for the following manufacturers / Part numbers:
The Gottlieb BUSHING FOR DOUBLE PUSHBUTTON #B-21018 is not currently available; however, it should be possible to modify our buttons easily to replicate them. I’ll try to spend some time in the future to publish a how-to-modify here in this blog if there is interest.
These buttons are available in the following translucent colors:
Yellow,
Amber,
Orange,
Red,
Blue,
Green,
and Purple.
Additionally we’ve created some unique custom colors which should be of interest to the pinball community:
Clear
Teal,
and Smoke Black.
We also have some limited stock of:
Lime Green,
Smoke-Blue,
and Light Purple.
Colors are show below and should represent the colors available. Please Note:Keep in mind your monitor and my camera’s color balance will throw the colors off a bit from the actual product you receive so use these as an approximation of what will be shipped to you.
The Housings:
Both the Housings and Buttons are made out of PMMA (Acrylic) so they can be easily laser etched and paint filled like I did on my Original Bally Star Trek Restoration.
Please let us know if there is a color not represented here… or if you’d like to see some opaque colors made.
I’d also like to call Attention to a product we’ve had on the website for a couple of months… The Bally Flipper Mod was designed by myself several years ago for the Bally Star Trek Restoration. Each PCB features 12 LEDs in either Red or Green and rotated the LEDs to simulate a rotating pattern. I’ve held off announcing them here because I wanted to get the companion buttons on the website so fellow Pinheads would have the option of buying them with the colored button of their choice – IE one stop shopping.
This Flipper button mod is available as a 2 PCB set and looks like this in Green: